

AN EXPLORATORY ANALYSIS OF

 THE .NET COMPONENT MODEL AND UNIFRAME PARADIGM USING A

COLLABORATIVE APPROACH

A Thesis

Submitted to the Faculty

of

Purdue University

by

Natasha Sushil Gupta

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Electrical and Computer Engineering

August 2004

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
AUG 2004 2. REPORT TYPE

3. DATES COVERED
 00-00-2004 to 00-00-2004

4. TITLE AND SUBTITLE
An Exploratory Analysis of the .Net Component Model and Uniframe
Paradigm Using a Collaborative Approach

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Indiana University/Purdue University,Department of Computer and
Information Sciences,Indianapolis,IN,46202

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

186

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

 ii

To Mamma

 iii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude towards Dr.Rajeev Raje for giving

me the opportunity to work on the UniFrame project and help me complete my Masters

with valuable research experience. His guidance, encouragement, support and patience

has helped me through every step of my study period. Also, I would like to gratefully

acknowledge the guidance and support rendered by Dr. Andrew M. Olson throughout my

research period and help in successfully accomplishing this thesis. My sincere thanks to

Dr. Stanley Chein for allowing me to harness this opportunity to work on the UniFrame

project that has helped me grow both professionally and personally. I also appreciate Dr.

Dongsoo Kim for agreeing to be a part of my graduate committee.

Whole-heartedly, I would also like to thank Jim Freeman and Joe Hansome for

their cooperation and help in implementing a significant part of my prototype. I wish

them good luck in their careers. Special thanks to Valerie Lim Diemer for her patient

guidance in the formatting of the thesis. I would like to thank the U.S. Department of

Defense and the U.S. Office of Naval Research for supporting this research under the

award number N00014-01-1-0746.

Last but not least; I take this opportunity to sincerely thank the entire Department

of Electrical & Computer Engineering, Department of Computer & Information Science,

all my peers and friends for their cooperation and help during this important phase of my

life; and I would like to extend a special thanks to my colleague, Kalpana Tummala for

her immense contribution in helping me meet my thesis deadlines successfully.

 iv

TABLE OF CONTENTS

 Page

LIST OF TABLES ..vii

LIST OF FIGURES..viii

LIST OF TERMS.. x

ABSTRACT..xii

1 INTRODUCTION... 1

1.1 Problem Definition and Motivation ... 5
1.2 Research Goals of the Thesis ... 6
1.3 Contributions.. 6
1.4 Organization ... 7

2 RELATED AND PREVIOUS WORK ... 9
2.1 Introduction to UniFrame... 10

2.1.1 Unified Meta-component Model (UMM) .. 10
2.1.2 UniFrame Approach (UA) ... 11

2.2 Introduction to the .NET Platform ... 15
2.2.1 .NET Framework.. 15
2.2.2 Distributed Computing in .NET... 17

2.3 Resource Discovery.. 22
2.4 Commercial Bridges for .NET-Java Interoperability... 24

2.4.1 Underlying Principles of Bridges... 25
2.4.2 iHUB Bridge .. 27
2.4.3 Ja.NET Bridge.. 32

3 PROBLEM OF HETEROGENEITY.. 37
3.1 Points of Identification ... 38
3.2 Heterogeneity within UniFrame... 41
3.3 Different Mechanisms for Interoperability between .NET and Java 43
3.4 Connectors.. 49

3.4.1 Motivation for the Use of Connector Architecture 50
3.4.2 Connector Model.. 55

 v

4 UNIFRAME IS NOT WEB SERVICES – AN ANALYSIS...................................... 59
4.1 Architecture-based Comparison... 61

4.1.1 Discovery Services... 65
4.1.2 Service Descriptions... 69
4.1.3 Registries/Repositories... 75
4.1.4 Quality of Service Assurances ... 78

4.2 Model-based Comparison .. 81
4.3 Web Services and UniFrame Collaboration... 85

5 .NET-BASED UNIFRAME RESOURCE DISCOVERY SERVICE 86
5.1 General Architecture .. 87
5.2 The .NET URDS-specific Architecture ... 90
5.3 Issues in .NET Specific Adaptation ... 92

5.3.1 Registration Mechanism... 92
5.3.2 Interoperability Issue.. 101

5.4 Experimental Validation of .NET URDS... 107
5.4.1 Comparison-Based Experiments .. 109
5.4.2 Scalability-Based Experiments to Check the System Functionality 115

6 LINKING UNIFRAME RESOURCE DISCOVERY SERVICES........................... 120
6.1 Proposed Architecture for Linking URDSs – Discovery Manager.................. 121
6.2 Different Points of Consideration .. 123
6.3 Chosen Scenario for Experimentation.. 129
6.4 DM Architecture .. 132

6.4.1 Functions .. 132
6.4.2 Policies ... 133
6.4.3 Algorithms Supported by DM.. 133

6.5 LM Architecture... 137
6.5.1 Functions .. 138
6.5.2 Policies ... 138
6.5.3 Handling Interoperability with a Heterogeneous LM 139
6.5.4 Algorithms Supported .. 143

6.6 Experimentation ... 149
6.6.1 Experimental Set-up... 151
6.6.2 Experimental Use-Case .. 152
6.6.3 Results and Analysis .. 154

7 CONCLUSION AND FUTURE WORK.. 158
7.1 Summary of the Thesis... 158
7.2 Contributions of the Thesis .. 160
7.3 Future Work ... 161
7.4 Conclusions .. 163

 vi

LIST OF REFERENCES .. 164

APPENDIX... 171

 vii

LIST OF TABLES

Table Page

Table 3.1 Comparison of .NET-Java interoperability mechanisms [INT01]................... 48

Table 4.1 Architectural comparison of Web Services and UniFrame paradigms............ 61

Table 4.2 Discovery process under Web Services and UniFrame paradigms 69

Table 4.3 Registration mechanism in Web Services and UniFrame paradigms 78

Table 4.4 QoS assurance under Web Services and UniFrame paradigms 80

Table 4.5 EAI and B2B Solutions requirements [PIN01].. 83

Table 6.1 Query results retrieval time measured by the DM in case of heterogeneous and

homogeneous URDS federation.. 157

 viii

LIST OF FIGURES

Figure Page
Figure 2.1 The UniFrame process .. 12

Figure 2.2 Cross language interoperability in .NET .. 16

Figure 2.3 .NET Remoting architecture [REM04]... 21

Figure 2.4 General scenario employed by .NET-Java bridges... 26

Figure 2.5 Java and .NET interoperability using iHUB’s J2N bridge [BRI03] 28

Figure 2.6 .NET and J2EE interoperability using iHUB’s N2J bridge [BRI03].............. 30

Figure 2.7 Java client - .NET server interoperability using Ja.NET bridge[BRI04]........ 33

Figure 2.8 .NET client – Java server interoperability using Ja.NET bridge [BRI04]...... 34

Figure 3.1 Server and client across distribution boundaries [BUL00]............................. 50

Figure 3.2 Component modeled as a connector – distribution boundary across the code

[BUL00] .. 51

Figure 3.3 Connector mediating the communication [BUL00] 52

Figure 3.4 Connector Architecture and Frame... 55

Figure 4.1 Discovery of Web Services... 67

Figure 4.2 WSDL description for a Cashier Validation Service...................................... 71

Figure 4.3 Informal representation of the UMM specifications of a component............. 73

Figure 5.1 The URDS Architecture [SIR01]... 87

Figure 5.2 Communication between HH, AR and DSM in .NET URDS [FRE02].......... 91

Figure 5.3 Registration mechanism in Java RMI component model 96

Figure 5.4 Active Registry-enabled registration mechanism in Java RMI 97

Figure 5.5 Registration mechanism in .NET Remoting model .. 98

Figure 5.6 Active Registry adaptation in .NET Remoting model.................................. 100

Figure 5.7 Abstract Component model [HUA01].. 102

Figure 5.8 Connector mediation between .NET and Java RMI interoperation.............. 106

 ix

Figure 5.9 Increase in the Number of Components matching the criteria of the query V

CQRRT.. 110

Figure 5.10 Increase in Number of Active Registries V CQRRT.................................. 112

Figure 5.11 Increase in Number of Headhunters V CQRRT ... 114

Figure 5.12 Increase in Number of Queries V CQRRT... 116

Figure 5.13 Variation of the Number of Queries, Java RMI URDS.............................. 116

Figure 5.14 Scaled .NET URDS behavior (for only four clients).................................. 118

Figure 6.1 Federated hierarchical organization of ICBs [SIR01] 121

Figure 6.2 Participation of the Discovery Manager within the UniFrame..................... 122

Figure 6.3 Algorithm: Register URDS instance... 134

Figure 6.4 Algorithm: Refresh list of known LMs... 135

Figure 6.5 Algorithm: Propagate list of known LMs... 136

Figure 6.6 Algorithm: Initiate discovery process by the DM .. 136

Figure 6.7 Algorithm: Submission of results to DM.. 137

Figure 6.8 Connector lifecycle ... 142

Figure 6.9 Algorithm: LM initialization .. 143

Figure 6.10 Algorithm: Algorithm for updating list of known LMs.............................. 144

Figure 6.11 Algorithm: Initialization of the Linking Dock.. 144

Figure 6.12 Algorithm: Handing the query for search in own URDS 145

Figure 6.13 Algorithm: Propagate query to other LMs.. 146

Figure 6.14 Query handling by the LM.. 148

Figure 6.15 Algorithm: Pass the query to other LM .. 149

Figure 6.16 Homogeneous federation experiment ... 153

Figure 6.17 Heterogeneous federation experiment .. 153

 x

LIST OF TERMS

Acronym Term

AM Adapter Manager

AR Active Registry

B2B Business To Business

CAO Client Activated Object

CLR Common Language Runtime

CORBA Common Object Request Broker Architecture

COTS Commercial Off – The Shelf

DCOM Distributed Component Object Model

DCS Distributed Computing System

DM Discovery Manager

DSM Domain Security Manager

EAI Enterprise Application Integration

GDM Generative Domain Model

GIIS Grid Index Information Service

GRIS Grid Resource Information Service

HH Headhunter

ICB Internet Component Broker

J2EE Java 2 Enterprise Edition

J2N Java To .NET

LM Link Manager

MDA Model Driven Architecture

N2J .NET To Java

QM Query Manager

QoS Quality of Service

 xi

Acronym Term

RMI Remote Method Invocation

SAO Server Activated Object

SOAP Simple Object Access Protocol

TLG Two Level Grammar

UA UniFrame Approach

UDDI Universal Description, Discovery and Integration

UMM Unified Meta-component Model

UQoS UniFrame Quality of Service

URDS UniFrame Resource Discovery Service

WS Web Services

WSDL Web Services Description Language

XML EXtensible Mark-up Language

 xii

ABSTRACT

Gupta, Natasha Sushil. M.S.E.C.E., Purdue University, August 2004. An Exploratory
Analysis of the .NET Component Model and UniFrame Paradigm Using a Collaborative
Approach. Major Professors: Stanley Y. P. Chien and Rajeev R. Raje.

The emergence of the Distributed Computing paradigm has laid down numerous

big challenges amidst the computing world. The advantages offered by a distributed

system as against a centralized one makes these challenges all the more necessary to be

overcomed. Currently, the computing industry is striving to achieve solutions to such

questions.

Microsoft’s .NET Framework has emerged as one of the computing paradigms in

response to such challenges. The aim of this study is to study the framework in detail and

provide a background/basis for the incorporation of this framework in the context of the

project UniFrame. The study expands on different fronts overlapping both .NET and

UniFrame. These aspects include the comparison of rapidly growing Web Services from

the UniFrame’s point of view in addition to the architectural issues incorporated in the

realization of a UniFrame Resource Discovery Service on a .NET platform. The thesis

also explores issues related to the interoperability of the .NET framework with other

computing models and suggests an approach based on a thorough study and

experimentation. This thesis clearly indicates that for a platform to truly support

integration of distributed computing systems, major challenges need to be addressed such

as dynamic discovery, registration and quality of service assurance and an approach is

required to tackle them across heterogeneous component models.

 1

1 INTRODUCTION

The computing world has experienced a growing shift of the computing paradigm

from a centralized to a distributed one, for the past few years. More and more computers

are now connected to one another so that their capabilities can be shared over the network

creating the realm of distributed computing. Distributed Computing systems (DCS) group

individual computers together and pool their associated computing resources in order to

accomplish higher level computation in terms of compound systems. Resources, both

hardware and software, may be managed by servers and accessed by clients or they may

be encapsulated as objects and accessed by other client objects. The result in either case

is programming infrastructure composed of numerous, scattered and autonomous work

stations collaborating as a single integrated system. The Internet, intranet, and

spontaneous networking, are all examples of distributed systems. DCS offer several

advantages for improving availability and reliability through replication, performance

through parallelism and in addition flexibility, expansion, and scalability of resources.

Due to the benefits achieved with the use of DCS, distributed systems are posed to

become the primary computing infrastructure for scientific work and the industry. These

advantages are however associated with certain challenges inherent to the world of

distributed computing [DIS01] and are described in the following paragraphs.

Heterogeneity: DCS must be constructed from variety of different networks,

operating systems, computer hardware and programming languages. One possible

solution is the use of the Internet communication protocols to mask the differences in

networks, and there is a variety of middleware that can deal with other differences, as

will be discussed in the following paragraphs.

 2

Openness: The openness of a distributed system is the characteristic, which

determines whether the system can be extended and re-implemented in various ways. The

openness of distributed systems is determined primarily by the degree to which new

resource-sharing services can be added and be made available for use by a variety of

client programs.

Security: Information resources that are made available and maintained in the

DCS may hold a high intrinsic value for the owners of the information, for example, in

the domain of defense and medical care. Their security is therefore of considerable

importance. Security for information resources has three components: confidentiality

(protection against disclosure to unauthorized users); integrity (protection against

alteration and/or corruption); and availability (protection against interference with the

means to access the resources).

Scalability: Distributed systems operate effectively and efficiently at many

different scales, ranging from small intranet to the Internet. A DCS is described as

scalable if it remains effective when there is a significant increase in the number of

resources and the number of users.

Failure handling: Distributed systems are characterized by partial failures, i.e.,

some components of the system fail, while others continue to function normally. Hence,

failure handling is of critical importance in a DCS. Every DCS hence needs to address

questions such as detecting failures, masking failures, tolerating failures and recovery

from failures.

Concurrency: The concept of “shared resources” in a DCS implies inherent

concurrency where both services and applications can be shared by multiple clients. A

DCS must be responsible to ensure that the shared resources are accessed in a safe and

synchronized way in a concurrent environment.

 3

Transparency: This challenge is defined as the concealment from the user and the

application programmer of the separation and disparity of the components in a DCS, so

that the system is perceived as a whole rather than a collection of independent of

components.

One of the promising approaches to handle these challenges and allow the

software design of DCS is based on the principles of distributed component computing

(DCC). Under this paradigm, integrating geographically scattered heterogeneous software

components creates DCS. These components constantly discover one another,

offer/utilize services, and negotiate the cost and quality of services. Such a vision

provides for a scalable solution and hides the underlying heterogeneity [RAJ01].

The principles of DCC led to the emergence of component middlewares for

developing commercial off-the shelf (COTS) components. Component middleware

encapsulates specific services or a set of services to provide reusable building blocks that

can be composed to develop DCS more rapidly and robustly than those built from

scratch. In particular, component middleware offers the following reusable capabilities

[GOK02]:

� Horizontal infrastructure services, such as request brokers,

� Vertical models of domain concepts, such as common semantics for higher-level

reusable component services, and

� Communication mechanisms between components such as remote-method

invocation or message passing.

A variety of such COTS component middlewares are prevalent and widely used.

Examples are Common Object Request Broker Architecture (CORBA) [COR01], Java 2

Enterprise Edition (J2EE) [JAV01], DCOM [MIC01], and .NET [MIC02]. Despite the

advances in the ubiquity and quality of component middleware, the following challenges

still exist in constructing DCS out of component midlewares and hence need to be

addressed.

 4

Proliferation of middleware technologies: A majority of the middleware

platforms are designed for “closed” systems. However, in a DCS, there is a need for the

middleware platforms to work with heterogeneous platforms and languages, interfaces

with legacy code written in different languages and interoperate across multiple

middleware used by different component developers. The COTS component middleware,

however, do not provide a complete end-to-end solution to support DCS development in

a diverse environment.

Satisfying multiple qualities of service requirements: A large number of

distributed systems have stringent requirements of quality of service (QoS) demands such

as efficiency, scalability, dependability, and security that must be satisfied and that

require end-to-end enforcement to the whole of DCS. Conventional implementations of

component middleware are unable to enforce complex QoS requirements effectively

In addition, there are myriad strategies for configuring and deploying different

underlying middlewares so that it becomes a daunting task to assemble a DCS composed

of incompatible COTS components. Hence, a comprehensive framework that provides

seamless access to the underlying components and aids in the design of a DCS is

required. UniFrame [RAJ01] is one such example of a framework that aims to construct a

DCS, while using automation, out of heterogeneous components that conform to a quality

of service. It provides a paradigm to systematically apply the notion of domain-specific

models to engineer a DCS, while hiding the complexities associated with different COTS

component middleware used to develop the components. Design of such a framework

entails addressing all the above-mentioned challenges.

.NET [MIC02] is one of the prominent component middleware in the field of

distributed component-based computing. An inclusion of the .NET component

middleware within the UniFrame requires an exhaustive study and investigation into its

underlying model. The thesis presents a synergistic approach to such a study in the

context of .NET and UniFrame.

 5

1.1 Problem Definition and Motivation

The UniFrame approach [RAJ01, RAJ02] incorporates the following key

concepts: a) a meta-component model (the Unified Meta Model – UMM [RAJ00]), with a

associated hierarchical setup for indicating the contracts and constraints of the

components and associated queries for integrating a distributed system, b) an integration

of the QoS at the individual component and distributed application levels, c) the

validation and assurance of the QoS, based on the concept of event grammars, and e)

generative rules, along with their formal specifications, for assembling an ensemble of

components out of available component choices.

The UniFrame’s approach to creating a DCS out of heterogeneous components

requires understanding and then overcoming the wide disparities that exist between

different component models. Hence, the underlying approach, in UniFrame, is largely

dependent on tackling issues that arise while bridging different component middleware.

Middleware is reusable software that resides between the applications and the

underlying operating systems, network protocol stacks and hardware. Its primary goal is

to bridge the gap between the application programs and the lower-level hardware and

software infrastructure to coordinate how parts of the applications are connected and how

they interoperate [GOK02].

Since every component model is fairly comprehensive, it contains an associated

methodology and architecture that needs to be used while interoperating with other

component models. Thus, the incorporation of any component model into the UniFrame

requires a thorough understanding and investigation of the component model when

placed in the context of the UniFrame. This study chooses one particular eminent

component model, .NET, and examines its incorporation into the UniFrame. During the

inclusion process, this thesis also addresses many above-mentioned interesting questions,

such as, does the .NET component model solve all the problems associated with the

construction of a DCS?, what changes need to be made if a component created by using

 6

the .NET model has to interoperate with components implemented using another

models?, and what are the trade-offs associated with this process?

1.2 Research Goals of the Thesis

The objective of this thesis of encompassing .NET into UniFrame is subdivided

into three specific goals:

� To analyze and compare the underlying distributed computing model of the .NET

paradigm with respect to the approach used by UniFrame.

� To adapt and experiment with the discovery aspect of the UniFrame in the context

of .NET.

� To propose an architecture, using the UniFrame principles, for interoperating

between the .NET and Java-RMI models.

1.3 Contributions

.NET has emerged as one of the widely accepted component models and provides

the infrastructure to support organizing distributed components into service-oriented

architectures for the realization of a DCS. However, even though the model supports

inherent features for achieving interoperability necessary to achieve a DCS, this study

indicates that, there are a number of issues that it still needs to consider in order to truly

tackle the problem of heterogeneity. Firstly, like other component models, .NET assumes

the presence of other components adhering to the same model in a DCS. This might not

be the case in a large scale decentralized system and hence even though the model is

complete in its own realm, it cannot truly achieve an efficient construction of a DCS to

offer a variety of services. Thus, there is a need for a meta-model which can tackle the

problem of heterogeneity in compliance with the principles of local autonomy for

distributed component computing. Since, UniFrame provides for such a meta-model, it

can overcome the limitations of the .NET component model. However, this requires the

incorporation of this model into the UniFrame which is a challenging task since it

 7

requires a thorough evaluation of the different aspects associated with .NET (or any other

component model). This thesis provides for such a guideline for leveraging the .NET

component model at different fronts identified for the model, such as registration and

dynamic discovery of .NET components and interoperability with other component

models for an efficient composition of a DCS. Since, the study is carried out in

conjunction with UniFrame, this thesis also contributes to the evaluation of the UniFrame

approach relative to one of the major challenge it faces, namely heterogeneity, indicating

that the principles of UniFrame lead to a better approach for DCS construction than

solely .NET and at the same time can encompass .NET’s functionality provided it is able

to tackle different technological related issues faced, an area where this thesis contributes.

The deliverables of this thesis are:

� This research provides the metrics for comparing the underlying distributed

models of the .NET and UniFrame and describes an empirical evaluation based on

these metrics.

� It proposes and implements a platform-specific discovery architecture (.NET

Remoting-based) from a known platform-independent UniFrame resource

discovery service.

� It provides an approach for the federation of the URDS instances, which spans

across heterogeneous discovery services. The approach is validated with a

prototypical implementation and associated experimentation.

1.4 Organization

The thesis is organized into seven chapters. The first chapter provides an

introduction to the overall goal of the thesis with the focus on problem statement and the

motivation behind the work. This in turn followed by chapter two which describes the

related and previous work. The problem of heterogeneity is discussed in the chapter

three. The chapter four provides a detailed analysis of the Web Services framework of

the .NET paradigm in comparison to the UniFrame approach. The chapter five describes

the UniFrame Resource Discovery Service as incarnated in the .NET component model.

 8

The chapter six studies the problem of heterogeneity in the context of UniFrame and

.NET and provides for experimental validation in terms of federation of heterogeneous

discovery services and interoperation studied with respect to .NET. Finally, the chapter

seven concludes the thesis with the summary of the study and future work.

 9

2 RELATED AND PREVIOUS WORK

In reference to the three main sub-goals of the thesis, namely the analysis of the

UniFrame and Web Services paradigms, adaptation of the URDS architecture in the

context of .NET and studying interoperability with respect to the interconnection of

discovery services; this chapter provides an introduction to some of the works related to

this study. Section 2.1 introduces the UniFrame paradigm which forms an integral part of

the previous work on which this study is based. Section 2.2 then introduces the .NET

component model in brief. Other details of the framework are incorporated in later

chapters as and when needed. The next step that the thesis takes in order to study the

collaboration of the UniFrame model with the .NET framework is the mapping of the

URDS architecture to a .NET-based implementation. The reconstruction is also studied in

terms of performance and heterogeneity in Chapters 5 and 6 respectively. Hence, it

becomes important to discuss some of the related work in this direction.

Section 2.3 briefly describes the different works in this direction. Encompassing

the .NET component model into the UniFrame also entails certain interoperability issues

with respect to other component models at different areas of the UniFrame. The study

includes experimentation with this aspect in terms of interoperability between the .NET

component model and the Java RMI model. Section 2.4 discusses the interoperability

provided in this direction by some of the commercial bridges that were studied and

experimented with as part of the study.

 10

2.1 Introduction to UniFrame

The main objective of UniFrame research initiative is to provide a framework for

the seamless integration of distributed heterogeneous components. UniFrame aims at

achieving automation (to the extent possible) while integrating these components and

also stresses the quality assurance of individual components and the system made out of

them. The UniFrame Approach provides the overall process and is based on the Unified

Meta-component model. More details about these can be found in [RAJ00], [RAJ01] and

[RAJ02]. The next two sections discuss the process and incorporate various aspects such

as UMM specifications, the UniFrame Quality of Service Framework and the UniFrame

Resource Discovery Service (URDS) in brief; the URDS will be discussed in detail in

Chapter 5. The details are based on the work from above references.

2.1.1 Unified Meta-component Model (UMM)

In providing the overview of the UniFrame process the first step is to introduce

the UMM which is the foundation of the approach. The recent shift in the focus of the

Object Management Group (OMG) to Model Driven Architecture (MDA) [OMG01a] is a

recognition that bridging components to create a distributed computing system requires

standardization of not only the infrastructure but also Business and Component models.

The UMM is one such standard aimed at providing a unifying meta-model for the

purpose of enabling discovery, interoperability, and collaboration of components using

the generative techniques. It consists of the following main parts: components, services

and service guarantees, and infrastructure.

Components: In UMM, components are autonomous entities that have well-

defined interfaces and private implementations. Any communication with a component is

through its interfaces which act as the input and the output channels for the component.

The components may adhere to diverse distributed computing models. In addition, each

component in UMM is defined by three main aspects: a) computational aspect, b)

cooperative aspect and c) auxiliary aspect. The computational aspect of a component

 11

enables UMM components to support the notion of “introspection” by which it precisely

describes its functionality to other components in a DCS.

Service and Service Guarantees: The service aspect of each component is the

means by which a component is able to specify the quality of the service it offers. This

aspect is significant in a DCS where there could be multiple choices for a particular

component. The quality assurance of a service provided by the developer enables a

system integrator to have some form of guaranty about the performance of the service

during its deployment and utilization in a bigger system. Some of the factors identified in

the UMM, based on which the QoS of a component could be measured are algorithm

used, its expected computational effort, required resources, and etc. UniFrame is a

quality-oriented framework and the UMM provides for a UniFrame Quality of Service

Framework (UQoS) [BRA01] to guaranty the necessary QoS, both at the component and

system’s level.

Infrastructure: The UMM provides a discovery infrastructure which enables the

discovery of components belonging to the different component models and based on

certain functional and non-functional constraints. The infrastructure is primarily made up

of the concepts of the headhunter and Internet Component Broker [RAJ02]. Some of

these aspects of the UMM will be further discussed in detail in the coming sections under

Chapter 3 when describing these aspects in detail with respect to the Web Services

Framework.

2.1.2 UniFrame Approach (UA)

The UniFrame process of composing distributed computing system can be

explained with the help of Figure 2.1 (with graphics from due permissions from

[CLI02]). The process proceeds in the following two main parts [RAJ02],

 12

� Component development and deployment.

� Automated system generation and its QoS-based evaluation.

Component Development and Deployment: This phase is built on the notion that

the UniFrame approach is based on the Generative Programming [CZA00] paradigm.

Therefore the process has an underlying assumption that the generative environment of

the UniFrame is constructed around a generative domain specific knowledge (GDM)

supporting component-based assembly. This implies that the components are created for

a specific application domain, based on an accepted and a standardized GDM.

Figure 2.1 The UniFrame process

Therefore the component development and deployment phase begins with the “domain

knowledge base” (refer to Figure 2.1) and the “standards” which are created and put in

place by the “Domain Expert”. The knowledge base includes the natural language-like

specifications for a component for that domain – these consist of the computational,

 13

cooperative and the auxiliary aspects and the QoS metrics of the component. The natural

language-like specifications are then refined using the theory of Two-Level Grammar

(TLG) natural language specifications [BAR00, VAN65] into a formal XML-based

UMM specifications for the component. The derivation process also results in the

generation of interfaces that incorporates all the UniFrame aspects of the component

(discussed in Section 2.1.1). The “Component Developers” develop components in a

component model of their choice and provide for the implementations for the

computational and behavioral methods specified as part of the UniFrame knowledgebase.

In addition the developer also refers to the UniFrame’s QoS catalog [BRA01] in order to

incorporate QoS metrics pertinent to the components of the domain the developer is

developing components for. The “component quality measures” by the developer then

include the empirical validation of the QoS of the component which determines the

values for the identified QoS metrics of the component. The developer has to follow an

iterative approach by refining either the UMM specifications or the implementation of the

component. Upon a successful determination and implementation of the QoS of the

component with respect to the QoS catalog, the developer now deploys his component on

the network (refer to the “component deployment” in Figure 2.1). The component is now

ready to be discovered and utilized in a larger application. Hence, the discovery of

components by the infrastructure of the UniFrame could result in the components

belonging to a diverse component models such as CORBA, J2EE, .NET, etc.

Automated System Generation and QoS-based Evaluation: The process of

automated system generation and the evaluation of its QoS proceeds in an iterative

manner. The process is outlined in the following steps:

a) The “System Integrator” who wishes to develop a DCS presents to the UniFrame

system the query for the system with the required system characteristics. The

system’s query is then processed using the UniFrame domain knowledge base for

the domain to which the system query belongs to. The knowledge-base consists of

the requirements specifications and the matching design specifications. The latter

specifies the type of components required to construct the queried system and the

 14

interdependence between these components. The Composition/Decomposition

model [SUN03] is then used to deduce the QoS of the required components. The

set of functional and QoS-based search parameters are now available as a set of

component queries (refer to “Modified Query” in Figure 2.1) to be processed by

the URDS.

b) The “Distributed Resource Discovery” now performs a search within the scope of

the domain of the component queries given to it. The search extends to all the

heterogeneous component models and search is based on both functional and non-

functional requirements specified as part of the query parameters. The set of

discovered components is then returned to the system integrator.

c) Components that meet the query requirements to the maximum extent, are now

selected to compose the system by the System Generator. The composition is

carried out on the basis of the generation rules embedded in the system design

specification outlined in the GDM. The components with the appropriate adapters

(in case of heterogeneous components) form a software implementation of the

targeted system. The adapter components act as the glue-wrapper bridging the

gaps between off-shelf components chosen to implement the distributed system.

d) However, the system composed may or may not meet the system’s requirements

completely (refer to “Quality Validation” in Figure 2.1). This is verified using the

event traces and a set of test cases. In case the system fails to match the specific

constraints, the system generated is discarded. The process then may request

additional components or attempt to refine the system query by adding more

information about the desired solution from the problem domain. The process

continues in an iterative manner unless and until the DCS is built satisfying the

functional and QoS specifications of the system’s query or the system integrator is

satisfied with the generated system’s test results. The system once has passed the

quality validation tests it is ready to be deployed.

From the above discussion it can be inferred that the research issues incorporated

within the UniFrame concept span across three main areas:

 15

� Architecture-based Interoperability

� Validation of Quality Requirements

� Distributed Resource Discovery

The study of the UniFrame approach in the context of the .NET component model

requires addressing some of the above issues and hence requires a deep entailed study

combined with experimentation in each of the above fields. For the purpose of the study,

the two main issues identified are Architecture-based interoperability and Distributed

Resource Discovery. Both the issues involve the participation of components from

different component models and hence were chosen as the concentration of the thesis.

The next section introduces the .NET platform followed by related work in the

field of achieving interoperability between .NET and J2EE component model. This is

followed by work in the field of “Distributed Resource Discovery” in the context of .NET

as part of chapter 5.

2.2 Introduction to the .NET Platform

The following section describes the .NET platform by dividing it into two sub-

sections. Section 2.2.1 provides the details of the basic .NET framework and its

constituent parts. Since the focus of the study is primarily the distributed computing

paradigm of .NET, Section 2.2.2 includes some details on its distributed computing

paradigm, namely Web Services and Remoting.

2.2.1 .NET Framework

An application framework is defined to be a set of guidelines and specifications

that provide platforms, tools, and programming environments for addressing the design,

integration, performance, security and reliability of distributed and multi-tiered

applications [WEB02]. Application development tools and application servers are built

on top of these application frameworks. Microsoft .NET Framework [MIC02] is one such

 16

application framework for client-server and Web-based applications. The framework is

intended to make the development and consumption of Web Services a central part of

distributed application development using .NET. The core components of the .NET

Framework consists of:

Common Language Runtime (CLR): It is the runtime execution environment for

the .NET applications. It provides services such as memory allocation, thread

management, conversion of MSIL (Microsoft Intermediate Language) to the native

platform code as well as enforcing security policies.

Framework Class Library: It provides a set of classes logically grouped into

hierarchical namespaces that provide access to the underlying features of the operating

system. It is aimed at providing a common set of APIs across all programming languages

and thus enabling cross-language inheritance, error handling and debugging. This kind of

interoperability is referred to as “Cross-Language Interoperability” in .NET terms. As

long as the language targets the CLR, it can be integrated into the .NET application.

Figure 2.2 depicts this fact.

Figure 2.2 Cross language interoperability in .NET

�������

����	��
�

�	���
�

��� ���� �� ������� ����������

� ������
����

���������
�����
����
�

� � �
 � � ��
 �

 17

ADO.NET: An extension to the ActiveX Data Objects, this data access technology

also targets the Web.

ASP.NET: ASP.NET is the next version of Microsoft’s ASP for building Web

Applications, i.e. it provides a web application platform with services necessary to build

and deploy web applications. Since it is a part of the .Net framework, it also incorporates

the CLR and the Framework Class Library which enable these services. It enables two

features for distributed applications: Web Forms and XML Web Services. Web Forms is

a technology to build form-based Web pages. XML Web services enable the exchange of

data using standards such as XML messaging and HTTP across firewalls in client/server

and server/server scenarios. XML Web Services will be discussed in detail in the coming

chapters.

The Common Language Specification: It is a set of rules that provides a contract

governing the interoperability between language compilers and libraries [MIC03]. This is

what enables multiple languages to run on the .NET framework thereby achieving the

necessary cross-language interoperability.

Win Forms: Windows Forms is the .NET platform for Windows Application

development based on object-oriented set of classes. Additionally, Windows Forms can

act as the local user interface in a multi-tier distributed solution. Within a Windows

Forms project, the form is the primary vehicle for user interaction.

Visual Studio .NET: It is the Microsoft tool that enables designing, building,

testing and deploying of .NET applications including Web Services.

2.2.2 Distributed Computing in .NET

There are basically two computing models supported by .NET for cross-process

communication. These are .NET XML Web Services and .NET Remoting [MIC01a].

 18

2.2.2.1 .NET Web Services

An XML Web Service is a software component or an application that exposes its

functionality programmatically over the Internet or intranet using the standard Internet

protocols like Simple Object Access Protocol (SOAP) for inter-program communication

and XML for data representation. The framework is based on the concept of a “service-

oriented” architecture in which software is hosted as service. The underlying idea is:

distributed applications are traditionally built using componentized software

methodologies such as CORBA and DCOM. However this leads to a potential problem in

the integration of distributed components. Since, each vendor provides its own set of

interface protocols, use of any one of the technologies implies a homogeneous adoption

of the technology which lacks a practical approach and universal adoption in today’s

disparate world. Web Services is an attempt to provide for a single unified infrastructure

to integrate heterogeneous components, and one that scales to the Internet.

Technologically, this is achieved by using message-based asynchronous technology and

Web protocols such as HTTP and XML. Since it based on Internet standards, Web

Services are loosely coupled. XML is the fundamental technology behind Web Services

framework, which consists of the following main parts:

Wire format for Inter Process Communication: Simple Object Access Protocol

(SOAP) is the Web Services’ standard mechanism for specifying the format of data

interchanged between the inter-communicating services. It represents one common set of

rules about data and commands are represented and extended.

Description of Web Services: Web Services Description Language (WSDL) is an

XML grammar is used to describe the capabilities of a Web Service since it

deterministically specifies the set of data and commands that a service accepts.

Discovery of Web Services: DISCO – discovery protocol is Web Services’ set of

rules to define the protocol for developers to locate services’ description documents.

 19

Central Registration of Web Services: Universal Description, Discovery and

Integration (UDDI) specification defines a framework for centralized registries which

house the information necessary to locate, store and exchange information about WS.

UDDI Business Registries store locations of the WSDL documents of Web Service in a

phone directory like structure. Service consumers can use these registries to locate

technical and general information about the service providers and then initiate

transactions or collaborations with them.

Hence, the WS framework provides a kind of wrapper for applications, which

allows them to interoperate on the Internet. This wrapper provides a standardized means

of describing WS, and what it does; publishing it to a registry, so that it can easily be

located and exposing an interface, so that the service can be invoked – all in a machine-

readable format. Hence interoperability is achieved between all clients and servers who

understand XML.

ASP.NET is Microsoft’s IIS-hosted infrastructure that supports industry standards

for WS. [MIC05]. It accomplishes this by providing a programming model based on

mapping SOAP message exchanges to individual method invocations.�

2.2.2.2 .NET Remoting

The .NET Remoting framework is another approach in the .NET paradigm which

allows the development of distributed applications and could includes web services as

well. In general, it is the process of programs or components interacting across certain

boundaries. Those contexts could be different processes or machines. Remote objects

provide the ability to execute methods on remote server, passing parameters and

receiving return values. The remote object always stays at the server, and only a reference

to it passed around among other machines.

 20

Remoting implementations generally distinguish between “remote objects” and

“mobile objects”. The former provides the ability to execute methods on remote servers,

passing parameters and receiving return values. The remote object always resides on the

server, and only a reference of it is passed to the other machines.

When mobile objects pass a context boundary, they are serialized (marshaled) into

a general representation either a binary or human readable format like XML – and then

de-serialized in the other context involved in the process. Server and the client both hold

copies of the same object. Methods executed on those copies of the object will always be

carried out in the local context, and no message will travel back to the machine from

which the object originated. In fact, after serialization and de-serialization, the copied

objects are indistinguishable from the regular local objects, and there is no distinction

between a server object and a client object [MIC04].

Remoting Architecture: Remote objects are accessed through channels. Channels

are transport protocols for passing the messages between remote objects. A channel is an

object that makes the communication between a client and a remote object across

application Domain boundaries. The concept of an “application domain” in the context of

.NET is particularly significant in understanding the distributed architecture of the .NET

based discovery service. The .NET’s terminology of an application Domain will be

further discussed in detail in Chapter 5, Section 5.3.1. The .NET framework implements

two default channel classes:

� HTTP channel: Implements a channel that uses the HTTP protocol.

� TCP channel: Implements a channel that uses the TCP protocol.

A channel takes a stream of data and creates a package for a transport protocol and sends

to the other machine. A simplified architecture of .NET Remoting is shown in Figure 2.3.

The figure depicts that a remote object is hosted within the context of the server’s

application domain (to be discussed later in Section 5.3.1) via the .NET Remoting System

(or the Remoting infrastructure). The remote object lives and functions within the

boundaries of its application domain.

 21

Figure 2.3 .NET Remoting architecture [REM04]

On the other end, the client creates a new instance of the server class knowing the

URL and the type of the remote object. The Remoting system creates a proxy object that

represents the class and returns to the client an object a reference to the proxy. When a

client calls a method, the Remoting infrastructure handles the call, checks the type

information, and sends the call over the channel to the server process. A listening channel

picks up the request and forwards it to the server Remoting system, which locates (in case

of server-activated objects or creates in case of client-activated objects, if necessary) and

calls the requested object. The process is then reversed, as the server Remoting system

bundles the response into a message that the server channel sends to the client channel.

Finally, the client Remoting system returns the result of the call to the client object

through the proxy. The process is similar to other remote communication paradigms

currently existing such as stub-skeleton mechanism. Remoting offers certain advantages

over the Web Services.

� Multiple protocol support including high-speed binary over TCP - faster than

SOAP over HTTP.

� Support for activation and lifetime control of remote objects by the client (similar

to DCOM).

� Support for passing objects by reference and by value.

� Support for callbacks.

 22

� Support for additional context information specific to .NET.

� Support for events.

� Provision for one-to-one mapping between the class and type hierarchy. Web

services and SOAP do not support such an object-oriented mechanism for

accessing remote objects.

The other details of the .NET Remoting paradigm become clearer as the study progresses.

2.3 Resource Discovery

As indicated in Section 2.1, one of the main challenges of the UniFrame’s

objective is the issue of distributed resource discovery. The discovery of resources plays

a significant role in locating, accessing, retrieving and managing pertinent resources from

distributed and heterogeneous networks. Such a facility is extremely important for

integration platforms such as UniFrame in enabling the automation of the process of

assembling distributed system out of heterogeneous components. Such a framework

entails the need for an infrastructure that can dynamically discover the presence of new

components in the search space which utilize and offer services, and allow for the

selection of components meeting the necessary functional as well as non-functional

requirements (such as desired QoS). The infrastructure also needs to provide translation

capabilities for specific models [SIR01]. The URDS is a proposed architecture with such

capabilities. There are other existing resource discovery services which seem to provide

similar functionalities. Based on the basic underlying concept the discovery services can

be categorized into two main groups, a) Lookup Services or Directory Services, and b)

Discovery Services.

Lookup (or Directory) Services: Lookup services imply passive services in which

the service requestors initiate a request to obtain the information of a required service.

Such services require the presence of some kind of a directory (or agent) to process the

incoming requests. UDDI Registry, CORBA trader services [OMG00, OMG01b], LDAP

[WAH97], Domain Name System [MOC87], etc. fall under this category.

 23

Discovery Services: The services under this category adopt a more active nature

and less initiative on behalf of the service seekers. The services allow components to

discover each other in a spontaneous manner based on service descriptions with little or

no human administrative intervention. Service Location Protocol (SLP) [GUT99a], JINI

[SUN01a], Ninja project using Secure Service Discovery Service (SSDS) [CZE99,

NIN02], etc. protocols employed by services belong to this category.

Internet Resource Discovery Protocols also define services to grant users access

to distribute information retrieval systems encompassing data for millions of web sites,

networks and users. Some of these are, Wide Area Information Servers Project (WAIS),

Archie and Gopher. Since the service acts a lookup based service, it alone cannot meet

the needs of dynamic discovery of components and other aforementioned needs of

integrating platforms like UniFrame. One of the other promising approaches for

discovery process is the Monitoring and Discovery Service (MDS) that forms the basis of

the Grid discovery service and is mainly employed for computational resources deployed

on the Grid. It also supports searching for resources by characteristics. However, unlike

URDS, the performance of a query to the MDS cannot be predicted with a pre-defined

formula [GLO04] and is depended on the complexity of the associated hierarchy of its

components, Grid Resource Information Service (GRIS) and Grid Index Information

Service (GIIS).

Both the categories of services pose the important question of heterogeneity. Not

all these services address the issue in comprehensive detail. For example, the CORBA

Trader services offer directory services only for CORBA objects and the JINI discovery

services spontaneously discover only other JINI enabled devices. UDDI serves as a look-

up service only for components which have been leveraged to the Web Services

framework. For these services to be logically compatible, they need to be mapped by

implementing equivalent protocols which defies the underlying goal of a “universal”

discovery service. The URDS architecture proposes to tackle this issue of interoperability

by providing discovery and directory services for components developed using different

 24

component models [SIR01]. The URDS combines the notion of discovery and directory

services by means of achieving a federation of its services. The ICB acts as the directory

for brokering the clients’ requests and responds with a list of matching services. These

services can belong to diverse component models. This is achieved by means of the ICB,

Headhunters and Active Registries (to be discussed in Chapter 5). In addition, an ICB can

also communicate with another ICB for handling the clients’ queries and increasing the

search space. This ICB can be homogeneous or heterogeneous. The communication is

enabled by means of a “Link Manager” (to be discussed in Chapter 6) which, with the

help of the Glue-Wrapper generator framework of the UniFrame can interoperate across

heterogeneous discovery services. Hence, the URDS addresses the issue of heterogeneity

with respect to the discovered components as well as other discovery service instances.

 The third area of study explored in terms of the .NET component model placed in

the context of UniFrame is addressing the problem of heterogeneity within the UniFrame

paradigm and applied and experimented with respect to .NET. The issue is discussed in

further detail in Chapter 3 and 6. Since the experimentation undertaken to tackle this

issue has been with two component models, namely .NET and Java RMI (whose

prototypical setup existed at the time of the study making it an obvious choice to

experiment and deal with), the next section discusses some of the commercial bridges

that aid in the .NET and Java interoperability. Some of the other mechanisms to achieve

this interoperability will be further discussed in chapter 3 while addressing the issues of

“Problem of heterogeneity”.

2.4 Commercial Bridges for .NET-Java Interoperability

Both .NET and Java (RMI or any other Java platform such as Java 2 Enterprise

Edition) are component models that exist widely in the field of application development.

While Java has been prevalent for a long period of time, .NET as rapidly emerged as

Microsoft’s component model inherently supporting the notion of Web Services. Co-

existence of both these models necessitates the means by which efficient integration can

 25

be achieved in a heterogeneous computing environment. This has led to the development

of a number of commercial software products that enable .NET and Java components to

interoperate. These products that achieve such functionality are termed as “bridges”.

Examples of such bridges (specifically for.NET and Java) are JNBridge [BRI01], iHUB

bridge [BRI02], Ja.NET bridge [BRI04].

However, it is important to understand as to the factors that need to be considered

while incorporating any bridge, since every bridging software has an associated set of

incorporation requirements that play a significant role in deciding a bridge that meets an

application’s integration requirements in the most appropriate manner.

Section 2.4.1 outlines the basic principle behind the bridging products

experimented with during the study. It should be noted that the study is comprehensive

enough in selecting the most prominent bridging solutions (for .NET and Java) that do

not limit the bridge’s functionality to solely Web Services as the interoperability

mechanism. Cape Clear solution [CAP04] falls into the category of such bridges, but is

not included as part of the study. The following sections discuss some of the bridges that

were experimented with during the course of the study and the experience gained as a

result. The use of bridges is leveraged in Chapter 6 to provide interoperability between

heterogeneous discovery services under the UniFrame framework.

2.4.1 Underlying Principles of Bridges

The study of bridges reveals a fact that the almost all the bridging products do not

have one set of compilation cycles and proxies that could connect a .NET and a Java

component in a bi-directional way. This implies that the steps involved in making a .NET

component invoke the functionality of a Java Server are different than those involved in a

Java component invoking a .NET server. Hence, the bridging softwares internally

incorporate two one-way bridges – either .NET to Java or Java to .NET. Thus the term

“bridging software” instead of “bridge” would be used by the next few sections.

 26

Every bridging software consists of a runtime environment or a kind of a service

which requires to be running on one of the platforms – either the client or the server. In

some bridges this can vary and might require background services on both the platforms.

At the core of every bridging technology lies a proxy generator, which generates

the necessary proxies to enable the heterogeneous remote objects to communicate. While

some bridging softwares consists of a single generator to do so, in other bridges, there is a

separate generator to generate each of the .NET proxies (of Java objects) and Java

proxies (for .NET objects). It is the capability of the generator that determines the nature

of the proxies generated and hence determines the extent of interoperability that the

bridge can provide. For example, if the generator is unable to generate mappings for user-

defined classes in one platform, the proxies will be devoid of these mappings and will not

allow the object in the other platform to be able to identify them limiting the scope of the

communication between the heterogeneous objects.

Even though the representation of the generators and the runtime environment is

different for each bridge, the underlying principle remains the same. Figure 2.4 depicts

the general scenario employed by the bridges with the example of a .NET client and a

Java Server.

Figure 2.4 General scenario employed by .NET-Java bridges

 27

The figure shows that the runtime environment proprietary to a bridging software

needs to be present either on the client’s machine or on the server’s platform (or both in

some cases). The generator of the bridging software generates the server’s (JS in the

Figure 2.4) proxy which is then used by the client (.NET client in this case) as a handle to

the remote server. The client needs to be re-compiled so as to access the necessary

proxies. The generated proxies in turn utilize the runtime environment of the bridge to

forward the calls of the client to the remote server. The runtime environment acts as the

communication engine between the two component models by providing the necessary

type mapping and the APIs for the proxies to access. The client’s call then passes to the

remote heterogeneous server via means of the bridge established.

The next two sections illustrate the concept of bridges with the help of two such

bridging technologies – iHUB and Ja.NET. Both the bridges have been experimented

with during the study and Ja.NET has also been incorporated to achieve the

interoperability between heterogeneous discovery services (as will be explained in

Chapter 6).

2.4.2 iHUB Bridge

This .NET and Java Integration product constitutes a number of individual bridges

that are installed independent of one another. These are, Java to .NET (J2N) Bridge,

.NET to Java (N2J) Bridge, Java to Windows (Java2COM) Bridge, Windows to Java,

(COM2Java) Bridge, and XML/Web Services Bridge. And as mentioned earlier, each

way communication, Java to .NET (J2N) and .NET to Java (N2J) constitutes a separate

bridge. In accordance with the focus of the section, only the first two bridges would be

discussed here, namely the J2N Bridge and N2J Bridge. Each of the two bridges, are

made up of a different set of modules. The common module is however the “proxy

generator” but requires a different instance for both J2N and N2J Bridge; a fact that the

bridge can be only one-way.

 28

2.4.2.1 J2N Bridge

iHUB’s J2N bridge enables Java applications to create and invoke methods on

.NET Remoting objects. It comprises of a Proxy Generator and the Client APIs (.NET

Remoting equivalent APIs for Java) and the Channels and the Communication engine).

All these modules are combined into a ihub.jar file which is essential for iHUB to

function properly. This file is the equivalent of the runtime environment that was

mentioned in Section 2.3.1. The following figure depicts the modules involved in a Java

component invoking a .NET Remote object.

Figure 2.5 Java and .NET interoperability using iHUB’s J2N bridge [BRI03]

As can be seen from the figure the basic concept is similar to what was depicted

in Figure 2.4. The figure shows a .NET component (implemented using the C# language)

exposed as a remote object on a remote host. The Java client can access the remote object

through the iHUB stub for the remote object. The Java client makes use of the iHUB

 29

Runtime (ihub.jar) which is being called by the iHUB stub. It communicates over the

network to the CLR remote host & consequently with the .NET component.

J2N Proxy Generator: iHUB's Proxy Generator is used to generate local Java

proxies (.java or .jar files) for remote .NET components. The Java application makes all

the method and service calls on the local proxy. The proxy in turn talks with the iHUB

Communication Engine which facilitates communication with the .NET object using the

.NET Remoting packet format. The communication details and the protocol complexities

are handled by the iHUB.jar file. Not indicated by the Figure 2.5, but the proxy

generation is carried out via a process in which iHUB service must be installed on the

.NET platform on which the remote .NET object whose proxies are to be generated

resides. The J2N proxy generator invokes the iHUB Service to get the information about

the .NET object. The Java proxies/stub is generated as a result, contained in a jar file. The

Proxy generator can be invoked from a remote Java platform as well, in which case the

proxy file is transported over the wire. The other modules of the J2N Bridge constitute

the Remoting API for java, Channels and the Communication Engine.

Remoting API for Java: The J2N Bridge provides a set of client APIs to the Java

applications in order to access the Remoting objects. These interfaces are identical to the

Remoting API’s that are available in .NET.

Channels: As indicated in Section 2.2, the Remoting model incorporates the

concept of Channels which act as the means of message transportation between .NET

Remoting objects. iHUB bridge makes this concept available by the its Remoting APIs to

the Java client as well.

Communication Engine: It facilitates the communication between the two

frameworks by providing multi-client access to the .NET server, wrapping the Java calls

into the Remoting packet format, providing the type mapping between Java and .NET

Remoting including the exception and error handling types.

 30

2.4.2.2 N2JBridge

The N2J bridge of iHUB supports the .NET clients to invoke the functionality of

the Java server. The Java objects supported by the bridge include Java classes,

JavaBeans, Servlets and EJBs. The Figure 2.6 depicts the process of communication

between .NET and Java object through the N2J Bridge.

Figure 2.6 .NET and J2EE interoperability using iHUB’s N2J bridge [BRI03]

The one-way N2J bridge again indicates the same underlying principle as

discussed in Section 2.3. The figure can be explained with the help of the following three

main parts which constitute the N2J bridge.

N2J Proxy generator: The Proxy Generator generates the .NET proxies (for the

remote Java object) and compiles them into .NET assemblies to be accessed by the .NET

client. These assemblies can then be invoked by the .NET using the Remoting API of the

.NET class library

 31

iHUB Server: This server is analogous to the runtime environment provided by a

bridge. In this case it resides on the Java server. All the methods invoked by the .NET

component gets routed through the iHUB Server, which hence, serves as the .NET CLR

on the remote machine. It provides all functions of the .NET CLR for Remoting objects

including object management, lifetime control, method invocation, etc. The server also

supports both TCP and HTTP channels, and thus, both binary and SOAP formats. Hence,

the access to the remote Java object is transparent to the .NET client.

Registration of Remote Java Objects: Since the Remoting calls of the .NET client

are processed by the iHUB server, it is important for the Java objects on the server’s

platform to be registered with the iHUB Server. This mechanism creates a one-to-one

mapping between the Java object and the properties provided by a corresponding .NET

Remoting class. The properties range includes lifetime, mode of communication,

channels and lifetime leasing of Java objects.

2.4.2.3 Observations

Some of the following facts that can be concluded from the above discussion are

that, a) whether it is the J2N bridge or the N2J bridge, both the bridges require a certain

level of alterations and compilation cycles on the client’s end, b) there are services and

runtimes which are required to be present on the client’s or the server’s side, and c) in

both the J2N and N2J bridge, the communication between the components is carried out

by the use of the Remoting paradigm (whether the use is of binary or the SOAP

protocol). And based on whether the client belongs to the Java or the .NET component

model, iHUB runtime is required on that particular host. For example, if the client

belongs to the Java component model (Figure 2.5), the iHUB runtime needs to be present

on the client’s host to convert the calls made by the Java object in a corresponding

Remoting call to the .NET Remoting server. And reverse is the case for a .NET client

(Figure 2.6). The iHUB server is hosted on the Java server’s end in order to process the

 32

incoming Remoting calls. Hence, the iHUB bridge leverages the .NET Remoting

paradigm at the basic level to achieve interoperability.

The experimentation of the iHUB bridge was carried out with the Java RMI

component model and was utilized to achieve interoperability between Java RMI

headhunters and .NET Active Registry. In addition to the above mentioned observations,

the other facts that have become evident after carrying out the experiments are: a) the

bridge is limited in its ability to serialize objects’ interfaces (to be discussed in detail in

Chapter 5), b) in order to pass data by encapsulating it into built-in objects of a

component model, such as ArrayLists, Hashtables etc, the bridge requires a lot of

customization code on the part of the client application. This requires additional efforts

from the application developer in order to incorporate the bridge’s functionality for

achieving the necessary integration and c) the iHUB APIs cannot be used by the Java

client if the client is developed on the RMI component model. The client only utilizes the

proxy generated by the proxy generator and needs to write custom code in order to access

the proxy. This adds another level of complexity to the use of bridge and could be

deduced only after experimentation with the bridge.

2.4.3 Ja.NET Bridge

The Ja.NET bridging software is provided by the Intrinsyc Inc. and like the iHUB

bridge, it also leverages the .NET Remoting platform to integrate to integrate Java-based

application and .NET components. In accordance with the support for elements of the

.NET Remoting framework, the bridge supports HTTP and TCP/IP protocols and either

SOAP or binary data formatting. It supports the Java and .NET component models for

various different servers such as EJBs, Java Servlets, .NET applications within the IIS

server etc. The bridging product is made up different entities which can be grouped into

the following categories according to the discussion of the underlying principles in

Section 2.4.1.

 33

Bridge Runtime environment: This category consists of the runtime environment

of the bridge which is needed for its operation. The “Ja.NET Runtime” falls into this

category. The software also consists of a tool (called Janetor) required to bootstrap the

Ja.NET Runtime and provides it with details such as, a) the location, type and channel

format of remote objects, b) hostname, port, assembly name and type of local objects,

c)licensing information, etc. Hence, it prepares the runtime to process the incoming calls

from a .NET client or outgoing calls from a Java client. The scenario is similar to the

iHUB bridge where the iHUB’s runtime environment is always required the on the Java

component’s end to be able to process the incoming/outgoing calls. Figure 2.7 and 2.8

depict the .NET and Java interoperability using Ja.NET bridge in case of Java Client-

.NET Server and .NET Client-Java Server situations respectively.

Figure 2.7 depicts a Java Client invoking the Ja.NET Runtime (by means of

proxies which form a part of the Ja.NET runtime in the figure) to obtain a reference to the

Client Activated Object (CAO) hosted on the .NET platform. The Ja.NET Runtime is

configured with the contact details of the remote object and hence forwards the call of the

client to the remote server (of the name “Factory”) of the type Singleton that is hosted by

the server side and returns a reference to the CAO object.

Figure 2.7 Java client - .NET server interoperability using Ja.NET bridge[BRI04]

 34

Figure 2.8 .NET client – Java server interoperability using Ja.NET bridge
[BRI04]

Both the figures above show that since it is the .NET Remoting paradigm that is

leveraged by the bridge, the Ja.NET Runtime is executed on the platform where the Java

component resides. Figure 2.7 is in correspondence with Figure 2.5 and Figure 2.8 with

Figure 2.6 in this respect (Ja.NET Runtime mapped to the iHUB Runtime or server).

Hence, both the bridges operate on the same underlying principle with different

implementations and capabilities. The Proxy generator (explained next) creates the

necessary proxies of the server object for the client to access.

Proxy Generator: The Proxy Generator for the Ja.NET consists of three entities:

a) GenService, b) GenJava and c) GenNet. The GenService is a Windows Service

component and is only deployable on the Windows platform. GenJava and GenNet are

two tools which aid in the generation of the proxies with the help of the GenService.

GenJava generates the Java proxies of a .NET server to be accessed by a Java client and

GenNet generates the .NET proxies of a Java server for a .NET client. The GenJava tool

uses the service to read the .NET assemblies and the GenNet tool to write .NET

assemblies. Thus, the functionality of the GenService depends on which of the tools is

invoking it and is now outlined in the following paragraphs.

 35

GenNet Tool and GenService: GenNet uses GenService to create a .NET

assembly from the input Java classes. A summary of the steps taken by GenNet when it is

invoked to generate a .NET assembly is as follows:

� GenNet analyses the Java component for its incorporated types.

� XML is used as the description language for the analyzed Java types by the

GenNet, which then sends the description to the GenService.

� GenService generates the necessary .NET assembly based on the XML

description at a location relative to the location of GenService.

GenJava and GenService: GenJava uses GenService to obtain metadata about a

.NET assembly. The Java proxies are then generated by GenJava and output to a location

relative to where GenJava resides. A summary of the steps taken by GenJava when it is

invoked to generate Java proxies is as follows:

� GenJava sends a notification event to the GenService providing the location of

the .NET assembly for which the proxies need to be generated.

� GenService reads the assembly metadata and sends back an XML description.

� GenJava generates Java proxy based on the XML description.

Hence, the actual proxy generation in this case is done by the GenJava rather than the

GenService.

2.4.3.1 Observations

Most of the observations for this bridge are the same as those for the iHUB bridge

such as, a) the underlying principle is the same as indicated, b) Ja.NET also leverages the

.NET Remoting platform for achieving interoperability, c) the software is also made up

of two one-way bridges and requires a certain level of alterations and recompilation

cycles by the client invoking the remote method, d) there are services and runtimes which

are required to be present on the client’s or the server’s hosting machine. The Ja.NET

runtime is required on the Java component’s end and since the GenService is a Windows

 36

service it places a constraint on the component developer to utilize its functionality

within a certain restricted environment.

The experimentation with the Ja.NET bridge also revealed that the bridge is

limited in its functionality to serialize objects’ interfaces. However, the bridge is more

efficient in terms of convenience and ease it provides in serializing data encapsulated in

ArrayLists, Lists and Hashtables etc. The runtime provides direct mapping between these

types of the respective component models with few or no additional steps required during

development of the code. It is due to this reason that the bridge was chosen as the

preferred method of interoperation for the experimentation of Chapter 6 and the third

goal of the thesis.

This chapter provides the previous work which lays the foundation of the thesis -

UniFrame and .NET component model – the two areas which the study targets. Also,

related work in the field of discovery services and commercial bridges which the thesis

later incorporates has been discussed. One important aspect of studying a component

model within an integration platform is to address the issues that can subsist with the co-

existence of other component models. Thus, it becomes important to address the problem

of heterogeneity in this respect. The next chapter introduces this problem in the context

of UniFrame and entails details about the approach that would be incorporated in the later

chapters to tackle interoperability.

 37

3 PROBLEM OF HETEROGENEITY

Commercial bridges are discussed as an interoperability mechanism in the

previous chapter. Also the focus was to analyze this interoperability mechanism in the

context of .NET and Java RMI keeping in line with the concentration of the study and the

ease of experimental validation with respect to the existing prototypical implementation

in Java RMI. The aim was to provide a background for the manner in which the problem

of heterogeneity tackled as part of the study. However, since the goal of the thesis does

not confine itself to only providing a .NET-centric solution, it becomes important to

discuss this problem in general in the domain of the UniFrame approach. The assumption

of the UniFrame approach is that the components will be developed and deployed

independently in a networked environment to be discovered and consumed by interested

service requestors. The autonomous and independent nature of the process implies that

the components can be heterogeneous and an integration platform requires addressing

these differences in order for a successful system composition. However, the term

“heterogeneity” comprises of different types of existence. These are: a) Syntax/Signature

heterogeneity (differences in the components’ interface signature), b) Semantic

heterogeneity (differences in the meanings of the provided/required interfaces of the

components), c) Protocol differences (ordering and blocking constraints that determine

the availability of services provided by components) and d) differences in the QoS

specifications of components. Heterogeneity also exists due to the differences in the

technological component models used to develop these components. This kind of

heterogeneity can encompass one or more of the aforementioned heterogeneities as well.

For example, components developed using different component models can also be at the

same time have different interfaces (both in their signature and semantics) and different

 38

protocols of communication. One of the sub-goals of this thesis attempts to address this

problem in the context of UniFrame and this chapter provides the necessary outline for it.

Section 3.1 identifies the different points of incongruity for this kind of heterogeneity and

those which should be tackled by a chosen interoperability mechanism. Section 3.2 then

lays out the different areas as to where the heterogeneity can exist within the UniFrame

paradigm followed by Section 3.3 which analyzes the various mechanisms for handling

this heterogeneity (particularly for .NET and Java RMI component models). However,

any approach which the UniFrame incorporates should be extensible to incorporate

different interoperability mechanisms and component models. A result of the

investigation undertaken for addressing this problem, as part of the study, is the

suggestion of the concept of “connectors”, which advocate a promising approach for the

realization of the concept of glue-wrapper generation for automated system generation

under the UniFrame approach. Section 3.4 discusses as to why.

3.1 Points of Identification

As discussed in Chapter 1 and Section 1.1, when components belonging to

different COTS component models need to be integrated, there could arise various

incompatibilities due to the differences in the underlying models, making it difficult if not

impossible to handle the interactions between them. There can be the following three

identified incompatibility points [RAP01].

1. Different Interface Approaches and Implementations

One of the basic elements of a component is its interface. Through its interfaces objects

expose their functionality. An interface consists of a description of a group of possible

operations that a client can ask from the object. A client always interacts with the

interface of the object and never with the object itself. Interface allows an object to

appear as a black-box. Different approaches and implementations of object interfaces

make them invisible to clients of other technologies.

 39

Both CORBA and DCOM use special Interface Definition Languages (IDLs), for

the interface specification. Java RMI uses the Java Language to define the interfaces.

Similarly, .NET Remoting uses any of the supported langue such as C#, VB etc to specify

the interfaces. In DCOM, every interface has a Universally Unique Identifier (UUID),

called the Interface Identifier (IID) and every object class has its own UUID, called the

Class Identifier (CLSID). Moreover, every object must implement the IUnknown

interface. When using the Java language to specify DCOM objects every Java class

implements that interface behind the scenes through the Microsoft Java Virtual Machine

(MSJVM). In Java RMI, the interface must be declared as public, must extend the

java.rmi.Remote and each method must declare java.rmi.RemoteException in its throws

clause. Similarly, every remote object using the .NET Remoting object model must

implement the class MarshalByRefObject.

2. Different Object References and Storage

When a client wishes to interact with an object then it must first retrieve information on

the object’s interface. A client’s underlying technology must recognize an object’s name;

it must know where to look, and how to retrieve its information. In other words, the client

must know as to how the required object’s technology stores and disseminates

information. If the client’s technology does not have that kind of ability then it is

impossible for the necessary information of the required object to be found.

In CORBA, the IDL compiler generated the appropriate client stubs and server

skeletons for a client to deposit a static invocation to the requested object. Moreover, all

the required information is stored in the Interface Repository through which the client can

get the run-time information for a dynamic invocation. The client is searching for the

needed methods using the object’s name reference and invokes it statically, through the

client stub interface, or dynamically, through the dynamic invocation interface,

depending on its runtime knowledge. For the interaction to be possible the CORBA

server program must bind the server object using the CORBA Naming Service. Prior to

 40

the above interaction, the CORBA server and the CORBA client program must first

initialize the CORBA ORB through the ORB.init() method.

Using the Java RMI, in the server side program, one creates the server object and

binds it to the RMI Registry using the Naming.Rebind() method by assigning a URL-

based name. On the client side, the Java RMI client gets a reference from the server’s

registry using the URL-based object’s name through the Naming.lookup() method.

.NET Remoting utilizes a registration of the built-in RemotingConfiguration class

of the .NET Framework Class Library. And as explained earlier, the registration is

confined to the application domain in which the host application hosts the registered

object. Each object makes the following parameters known to the RemotingConfiguration

Class:

� Unique URL of the object

� The Object Type

A client knowing the URL of the object can invoke the RemotingConfiguration class in

order to obtain a reference to the remote object and then invoke its functionality.

3. Different Protocols

Another basic element in distributed object interactions is the protocol used for the data

transmission. In this case, the term “protocol” not only denotes the transport-level

protocol, i.e., TCP/IP but also includes the presentation and session level protocols

supported by the Request Brokers (RBs). The transport-level protocol is responsible for

transmission of the data to the end-point. The presentation and session level protocols are

responsible for the formatting of the data transmitted between different RBs from a client

to an object, and vice-versa. According to Geraghty et all [GER99]: “Although the client

and the server may speak the same protocol, it is critical that they speak the same

language, or higher-level protocol.”

 41

Identification of the kinds of incompatibilities that can exist while connecting

components of different component models leads to another question – can heterogeneity

exist in UniFrame only at the level of system generation? Are there any other areas where

this issue needs to addressed in the UniFrame context? The following section attempts an

answer to these.

3.2 Heterogeneity within UniFrame

Some of the areas that can be recognized as possible areas of existence of

heterogeneity within UniFrame are as follows:

Within the principals of the URDS: As discussed in Chapter 2, Section 2.2, most

of the discovery/registry services do not assume the presence of other models. The

interoperability that they provide is limited mainly to the underlying hardware platform,

operating system, and/or implementational languages. The URDS is an attempt in the

direction of providing for a “service” discovery model that is dynamic and encompasses

services developed in diverse distributed computing models. This requires the

headhunters of the URDS to be universal in nature and hence should be able to

interoperate across disparate networks, with heterogeneous entities, which may be other

headhunters as well. Headhunters also communicate periodically with the Active

Registries to collect the registered services’ descriptions. The Active Registry of a

particular component model extends the native registration mechanism of that model

(Active Registry will be discussed in detail in Chapter 5). Thus, every component

belonging to a specific component model would register with an Active Registry of its

own component model. This facilitates the fact that the registration mechanism is not

uniform since it builds upon the indigenous technology of the underlying component

model. Hence, there would be as many different implementations of Active Registry as

there would be the component models, whose discovery and integration UniFrame

supports. Enabling communication of all such Active Registries with other principals of

 42

the URDS, such as the headhunters, also requires handling interoperability between

heterogeneous component models.

Linking multiple instances of URDS: In order to achieve scalability there arises a

need to link different instances of URDS to form a federation of UniFrame discovery

service. The federation allows the search space of a URDS instance to span across

multiple ICBs and hence provide for a more scalable and comprehensive solution to

dynamic discovery. Since URDS is a platform-independent architecture, the realization of

different entities of a URDS instance need not conform to one particular component

model. There could be a disparity between different URDS instances depending on the

configuration of the service which can depend on different factors. This introduces a level

of heterogeneity within and across URDS instances. Thus, federation of UniFrame

discovery service also needs to tackle interoperability between heterogeneous URDS.

System Composition: After the components have been discovered by URDS,

based on a certain criteria, they need to be integrated. It is possible that the chosen

components belong to any of the component models. Integrating a system out of these

heterogeneous components is a major challenge as it requires resolving the issue of

heterogeneity. Not only the system composition should resolve the basic architecture-

level heterogeneity but since the composed system must also meet the system’s quality of

service criteria, the glue-wrapper code that interacts between the heterogeneous

components should also have an associated quality of service within the QoS constraint

of the system being composed. This necessitates the need for a “gluing mechanism”

which can achieve a complete amalgamation of QoS constraints and other system

requirements, incorporating the known “interoperability mechanisms” to produce a

system meeting the necessary query conditions.

Before proceeding to the concept of “connectors” which is the suggested

approach for such a “gluing mechanism”, the next section lays out the different options

 43

for achieving interoperability between different component models. For the sake of

compactness the mechanisms are discussed within the context of .NET and Java RMI.

3.3 Different Mechanisms for Interoperability between .NET and Java

There are a multiple of methods to achieve interoperability between Java and

.NET. The following section illustrates a few of the methods to do so, namely,

interoperability using Web services, binary communication, CORBA and resource tier

solutions [INT01].

Web Services [WEB03]: Web Services were introduced as one of the distributed

computing paradigms of .NET. The issue would be discussed in further detail in the next

chapter. However, in this section, Web Services would be discussed solely from the view

of an interoperability mechanism rather a whole distributed paradigm itself.

Interoperability using Web Services can go across firewalls and proxy servers. In

addition, the SOAP and WSDL (introduced in Chapter 2 under related work) prove to be

an extensible and flexible format and standard of data representation enabling further

interoperability. However, there are few potential problems that can be posed with Web

Services for J2EE and .NET Interoperability.

[INT01] Data passed using Web Services inherently depends on XML and XSD

[SKO03]. Web Services pass SOAP messages encapsulating this XML data to another

entity using HTTP. Serializing data from in-memory objects to XML can be relatively

expensive, both computationally and for the resulting size of the data. Taking large data

objects and converting them to ASCII based XML representation can result into large

documents in certain scenarios. In case where the communication involves single

message or document across the network each day, this might not be a perpetual problem.

However, when thousands of messages are exchanged per second between two systems,

the additional overhead of message processing can be a consideration.

 44

The second issue with Web Services interoperability is the HTTP protocol itself.

HTTP is a request-response protocol. The client makes a request and expects a response

in a within the lifetime of the call. Some applications work better with an asynchronous

model – for example, a loan or credit card application process may take several hours to

complete. In such a case, the client holding the call channel open for that duration is

inappropriate. There are other alternatives to this problem such as the use of

asynchronous calls to poll the server regularly to see if the request operation was

completed. However, polling have certain inefficiencies which require other transport

protocols. These are TCP channel for the client to listen to the response from the server

or use of SMTP messages by the server to send the response. Such scenarios though

possible with Web Services, however, most of the current Web Services implementations

support HTTP only with a minimal support and standardization for the other

implementations.

Binary Interoperability: The mechanism can play an important role in those

applications where performance and size of the serialized data is of critical importance.

The binary interoperability methods serialize object from one platform into a binary

stream, send them across the network and then de-serialize the same data on the other

platform. Because both the parties address on the binary format to use, the serialization

ensures that the binary data is successfully mapped to local data types for each platform.

The way that this option can be utilized for .NET-Java interoperability is by using

the .NET Remoting as the binary protocol for communication. Bridges like JNBridge

discussed earlier, provide the mapping of the Java objects into .NET Remoting and vice-

versa. As the protocol uses a binary channel, the size of the packets going over the

network is reduced and leads to a better performance than an approach using XML

serialization. However, there are some disadvantages also associated with using the

binary protocol. Applications using .NET Remoting typically live within the enterprise ad

are rarely exposed to other organizations through firewalls or proxy servers (although

.NET Remoting does support HTTP channel and SOAP formatter). The reason being that

 45

the data types exposed by .NET Remoting server are based on the CLR, whereas the WS-

I basic profile (and other Web Services implementations) rely on more standardized XSD

style. In addition, using binary channel tends to enforce tight coupling with interfaces that

are exposed, implying that if the methods of the exposed components change when using

.Net Remoting, the stubs need to be re-generated and recompilation of the client and the

server are required. In contrast, SOAP is more extensible; additional data can be included

in the message header without having to modify the WSDL document.

Interoperability using CORBA: If binary interoperability is a must, but .NET

Remoting is not a recognized standard within an organization, another alternative exists

for organizations that have standardized on CORBA (Common Object Request Broker

Architecture). The last twelve months have seen the introduction of a number of open

source and commercial products that provide .NET clients with the ability to call and

invoke remote objects written to the CORBA specification—and that aren't limited to

interoperability only with Java-based applications. Typically, these products enable a

.NET client to use IIOP (Internet Inter-ORB Protocol) to invoke remote components. One

such commercial product is Borland's Janeva [BRI05]. This approach is most useful for

organizations that have deployed CORBA server-side components but who do not wish

to make any changes to them. Although using .NET Remoting provides binary

interoperability, many toolkits still require some modification to server-side objects

before clients can call the server component. Using a toolkit that allows a .NET client to

natively reference a CORBA object can overcome this by requiring modifications only to

the client.

One disadvantage is that the approach mandates ".NET client to Java server" style

architecture. In many applications there are occasions where Java components need to

invoke remote .NET objects—a good example of this is where an organization is

implementing a Service Oriented Architecture (SOA) and has a combination of services

developed using both technologies. For more information on achieving interoperability

 46

between .NET and Java using CORBA and the product Janeva, the reader is referred to

[BRI06].

Resource-Tier Interoperability: Interoperability solutions using Web services,

.NET Remoting, or CORBA are typically synchronous in nature, and occur between two

entities (a client and a server). In a typical scenario, the client calls the service, some data

is returned after processing and the call in done. In applications that need to behave in a

more asynchronous fashion, interoperability at the resource tier—which implies using

either a database or a message queue—may be one option. Using a database or message

queue to connect platforms based on .NET and J2EE can be one of the easiest ways to

achieve interoperability between the two. Database solutions typically share a table

between the two platforms, and each uses its preferred method for connecting to the

database (ADO.NET for .NET, JDBC for the Java platform). Use of stored procedures at

the database tier can also help in reducing duplication of code.

Interfacing with message queues works in a similar way, although each platform

will normally have to obtain a driver from the message queue vendor in order to establish

a connection. This may be a JMS (Java Message Service) driver for the J2EE platform, or

a specific set of classes for .NET. For example, IBM offers WebSphere MQ 5.3 drivers

with similar style interfaces for both Java and .NET. Many message queue vendors now

also offer the ability to communicate via more standardized interfaces such as Web

services.

In addition to providing a good support for asynchronous calls, using the resource

tier can prove beneficial for n-n style interoperability, where multiple clients need to

communicate with multiple servers. In the majority of the previous interoperability

solutions, each client needs to know the location of each server. In a scenario using an

intermediary database or message queue, although both sides must agree on the format of

the message, the client does not necessarily need knowledge of the service location which

 47

both negates the need for location-based information and can also help provide support

for failover and load balancing.

A database or message queue form of communication protocol was however

designed more specifically for asynchronous style communication. Using them in a

synchronous style call (for example, where an ASP.NET page required a response before

displaying the result to the user) can lead to potential performance issues. In addition,

using either a database or message queue introduces yet another piece to the

interoperability puzzle. For situations where many machines have a requirement for

interoperability, it may be worth the investment in administration and additional

machines; but in a scenario where just one client needs to interoperate with a single

service, this solution just introduces potential overhead. For further reference, refer to the

article in [BRI07].

Summary of the different methods: Each of the mechanisms discussed above for

the .NET and Java interoperability have their own advantages and disadvantages. The

incorporation of any of them in the existing applications or for building a distributed

system requires taking into consideration the merits and the suitability of each of these

methods. The following table lists some of the advantages and disadvantages of the

approaches discussed above.

The interoperability mechanisms discussed in the above section are with a focus

of discussing the model-related disparities that exists between component-object models,

within the context of .NET and Java RMI. However, when integrating pre-existing

components, there are more aspects to heterogeneity as well as integration than just

technological differences. Communication between two components can be worded as a

basic contract between the components. This contract needs to be more elaborated when

additional requirements are imposed – such as security, transactions, etc. These details

prove vital for the actual connection between components when the components form a

part of a distributed system with certain performance and QoS constraints. Hence, such

 48

details need to be importantly captured and in a way not visible to the component. These

details comprise of the technology/middleware used to realize the connection, security

issues such as encryption, quality of services, interface (semantic and signature)

incompatibilities etc.

Table 3.1 Comparison of .NET-Java interoperability mechanisms [INT01]

These details are usually referred to as non-functional or extra-functional

properties (NFPs) [BER03]. Reflecting these properties directly in the component’s code

can negatively influence the portability of the respective application across different

platforms and middleware and hence, need to be incorporated outside the scope of the

component. This problem is clearly reflected in one of the issues faced by the UniFrame

Glue-Wrapper Generator Approach, which can be broadly classified into two categories:

� Provision of glue-wrapper code which can handle all the component interactions

abiding to certain QoS metrics and other NFPs.

� Automation of the generation of this code to the extent possible.

 49

The architectural primitives called “connectors” [BAL01] address the first issue to

a large extent and hence the next section briefly introduces the concept of connectors and

the background research in this field. The section also indicates a reference to the work

which can form the basis of addressing the second issue.

3.4 Connectors

As mentioned earlier, connectors play a major role in component binding. The

component models such as Java RMI, CORBA, .NET Remoting etc., used for Off-Shelf

component development are mature enough for business applications; however they lack

certain features which are significant in other distributed applications for different

domains [BUL00]. For example, DCOM does not have any kind of architectural

description, which prevents checking and simulation of a system without it being

implemented. This makes DCOM an object-oriented middleware rather than a real

component model. Also, all the component models mentioned above rely on a particular

transport protocol. Neither of them employs a generic approach to component

interactions. This drawback is eliminated by the use of Connectors. While components

provide application-specific functionality, the connectors provide application-

independent interaction mechanisms. This entity stands at the same level as components

and mediates communication between components. It hides the technology used to

implement the connection and makes the whole component system more flexible and

tunable. It can wrap any of the interoperability mechanisms discussed in the previous

section and allow further modifications or tuning to their behavior and operation - an aim

which the UniFrame’s Glue-Wrapper Generator approach encapsulates.

Why do we need Connectors? Why can’t the interactions be modeled using the

existing primitives such as components? Due to the limited amount of work done in this

direction, there is often an inconsistent treatment and contradictory assumptions about

Connectors. For example, connectors are often considered explicit at the level of

architecture, but intangible in a system’s implementation. Also, due to the fact the

 50

differences between components and connectors are very subtle, it is tempting for a

developer to use components themselves to model component interactions if needed.

Section 3.4.1 discusses some of the major issues that motivate the use of connectors as

first class entities in software architectures [PER92, SHA96]. Section 3.4.2 then

introduces a theoretical implementation model for Connectors [BUL00], which seems the

most appropriate from the stand-point of glue-wrapper code functionality.

3.4.1 Motivation for the Use of Connector Architecture

Deployment Anomaly: the deployment anomaly is first discussed in [BAL01]. The

problem is inherent to distributed systems and remains one of the strongest motivation

factors for introducing connectors as a first class entity in component-based software

architectures. The problem is explained with the help of the following figure.

Figure 3.1 Server and client across distribution boundaries [BUL00]

The above figure represents two components, which are autonomous and

completely contained in their own grey boxes and have interfaces shown by the

rectangular boxes at their boundary.

Most middleware platforms create proxy objects which mediate the

communication, the common ones being stub at client side and skeleton on server side.

Since different types of middleware are not mutually compatible, neither during

development process nor during runtime, the middleware platform for given application

 51

must be chosen in early stage of application development and the implementation code

must reflect the needs of the selected platform.

The code for implementing the stubs/skeletons and other middleware specific

code are contained within the trapezoidal boxes within the components. These symbols

thus represent the middleware dependency of the implementation code of the component.

When a need arises to change the underlying middleware, the code of the component will

need to be changed to adapt to the new platform. However, source code to the

commercial components is not freely available and makes such a process impossible and

besides will also be a very time-consuming process. An obvious solution to this problem

seems the use of a component that can mediate the communication between components

A and B. Such mediation can be depicted by the following figure:

Figure 3.2 Component modeled as a connector – distribution boundary across
the code [BUL00]

The implementation code of this component would be generated to mediate

between these two specific components; whether it is generated manually or in an

automated fashion by the Glue-Wrapper Generator, is less irrelevant here. However, the

distribution boundary in this case will cross the component C from within the

implementation code rather than the interface ties. At the level of architecture description,

the distribution boundary can only cross a compound component at its interface ties and

not implementation code. A connector resolves the problem by the mere definition of it

and its architectural description as a first class entity, just like a component. The

 52

connection in the above figure would be modified as below with the intervention of a

connector:

Figure 3.3 Connector mediating the communication [BUL00]

In the above figure, the connection between components A and B is mediated

between the Connector; top-level entity which is a part of the architectural description of

the system consisting of A and B. The implementation of the connector is inherently

distributed and consists of parts, which are locally attached to components participating

in the interaction the connector mediates. The distribution boundary is clearly defined

therefore the connector does not suffer from the problem mentioned above where the

distribution boundary was crossing the component’s implementation code.

Connector Lifecycle: The life-cycle of a component differs significantly from that

of a connector. Off-The-shelf components are supposed to be pre-fabricated building

blocks with specific functionality and a set of parameters, which can be used to set or

adjust its non-functional properties. When the development of a component is complete,

the source code of a component implementation is compiled into binary form, which is

then packaged and prepared for distribution to component users. Developer of a

component application with a need for specific functionality can then obtain a component

in packaged form, deploy it into a deployment dock and after satisfying its requirements,

the component can be instantiated and run. Except for the configuration of its non-

functional properties, no modifications need to be made to the component

implementation for it to run in the deployment dock. If for example, the underlying

 53

middleware platform is changed for another with better or more suitable properties, a

component should not require any changes be made to it.

Such requirements conflicts with the concept of connectors, since the goal is to

allow the selection of the middleware platform and the execution environment as late as

during the deployment of component application, or in other words a distributed system

in reference to UniFrame. Therefore, the implementation of a connector has to be

designed so that it can be adapted or generated according to the choice made by the

deployer; in case of UniFrame, it would be the choice made by the System Generator in

an automated fashion. Each part of a connector is generated by the deployment dock

hosting the component it is attached to. The resulting implantation code is then compiled

and loaded into the deployment dock runtime, where it can be instantiated and bound to

the component interface participating in the interaction.

When using connectors to mediate component interactions, the element that

remains in composing an application is setting the interfaces and fine tuning them

according to the specifications of the application to be composed. The implementation

details of the component interactions according to the technology need to be only written

once and then reused according to the different components and their use within the

applications. These implementation details can be stored in the form of a knowledge base

known as the “technology knowledge-base” and include details in relevance to the

component models supported by the glue-wrapper generator.

Platform Dependency: The use of connectors allows for a greater flexibility when

choosing a transport method appropriate for a specific interaction. This allows the Glue-

Wrapper Generator to decide an appropriate interoperability mechanism, as discussed

before, to be incorporated within the connector architecture. As already indicated in the

previous section, the implementation code of a connector depends on the underlying

middleware platform and the execution environment. In addition, an application may

require the interactions to meet certain criteria concerning their non-functional properties,

 54

such as memory consumption, performance, reliability or quality-of-service guarantees.

The Glue-Wrapper Generator could generate the glue-code based on the connector

architecture and the QoS specifications of the connectors between a set of two

components could be based on the QoS composition-decomposition model defined in

[SUN03]. These specifications form an important part in system composition to meet the

QoS requirements specified in the system query in the first place.

Most of these criteria are mutually exclusive and therefore, it is feasible to have

multiple connector architectures for single connector type, each of them putting emphasis

on different factor. The choice of the connector architecture, underlying middleware and

the execution platform need to reflect the actual needs of an application or the criteria

requirements put on the system as a whole. Hence, using connectors to mediate

component interactions allows the UniFrame GWG to make such decisions as late as

during the deployment of the entire system, without affecting the application

components.

Connector architecture also allows for the capture of the nature of interactions,

which can then be used to generate effective connector implementations for specific types

of interactions. For example, when modeling an unreliable channel for streaming

multimedia, using a remote procedure call provided by an advanced middleware (e.g.,

CORBA) is clearly not needed, when such functionality can be gained by using UDP

datagram service or UNIX pipe (in case the connected components are located on the

same node). Again, when two components need to communicate by sending thousands of

messages within a second, communication using a heavy protocol such as SOAP and

XML could result in a large overhead leading to a delay in achieving the necessary

results from the communication.

There are different models proposed for the connector implementations. The work

done by Balek and Plasil [BAL01] combined with the work of Bulej and Bures [BUL00]

is now presented below. The work together gives one of the theoretical implementations

 55

for the connector model suitable for a generator that could automate the generation of

connectors based on this model.

3.4.2 Connector Model

Figure 3.4 Connector Architecture and Frame

The Connector model consists of:

Connector Frame: In [BAL01] the connector structure is proposed as a

hierarchical model, which reflects the top-down approach often used in design and

development of component applications. The Frame is the topmost abstraction in

connector design and models a connector as a black-box entity. Its purpose is to allow

developers of component applications to work with various types of connections

(procedure call, message passing, pipe etc.) without explicit knowledge of their

implementation. A detailed taxonomy of connectors can be found in [MEH00]. The black

rectangle in the above figure depicts a connector frame. Connector roles (dotted

rectangles) serve as attachment ports and their cardinality determines the number of

components allowed to connect to a particular port. The above example depicts a

connector with a single server role (sRole) and multiple client roles (cRole). Consistent

with the structural model of interactions, a role needs to have its provisions and

 56

requirements defined. These are directed interfaces, i.e., interfaces which a role either

provides a binding to (full circles) or requires to bound to (empty circles). The cardinality

of provisions and requirements is used to specify whether an interface is optional or

mandatory and whether it is singleton or comes in multiple instances. In the above

example, all role provisions and requirements are mandatory singletons.

Since the definition of a connector has to be machine readable, the designer of a

connector type is required to write the connector definition in a language with support for

connectors. In [BUL00], the Component Definition Language (CDL) [MEN98] has been

used for the purpose. The reference does not bind itself to any particular specification

language and chose CDL for the supporting prototype. For the purpose of UniFrame,

these specifications could be well supported by TLG (introduced in Section 2.1.2).

Connector Architecture: The level of details provided by the description of

connector frame is sufficient for connecting components together using various connector

types. However, the definition of the frame does not say anything about the internal

details of the connector. The Connector Architecture provides these internal details about

the functionality hidden by the black-box view, such as logging, transport security,

interface adaptation, synchronization, etc. It can be called as the gray-box view of the

connector and allows for the description of connector internals in the form of

composition of primitive elements [BUL00], the building blocks of connector

implementation. The gray circles inside the solid rectangle (connector frame) represent

the primitive elements. Each element provides the connector implementation with

specific functionality and is further indivisible. In the above figure, the client-side

architecture is shown to be composed of the following primitive elements:

� cInterceptor: can be used to log incoming method invocations.

� adaptor: can be incorporated if interface adaptation is required.

� stub: provides the functionality of remote procedure call client, such as

marshalling, sending a request over the network to the server and receiving and

unmarshalling the reply.

 57

The server side is composed of:

� skeleton: provides the remote procedure call server (opposite of stub).

� synchronizer: can be incorporated inside the connector if the requests at the server

need to be serialized or implementing a threading model.

� sInterceptor: primitive element used for logging on the server side.

The dotted rectangles mark the boundaries of the connector units. Connector unit

groups together elements to be instantiated in the same address space. The links between

elements sharing the same address space are created by an entity called “connector

builder” in [BUL00]. Such an entity could be the part of the UniFrame GWG which can

establish the links between the primitive elements after the knowledge is supplied to the

builder from the technology and other QoS descriptions of the connection. The

responsibility of establishing links across unit boundaries is delegated to the elements on

both sides of the link. Typically, these links use the underlying middleware to implement

the link, but can also be implemented by the elements by themselves. The framework

hence allows for the encapsulation of different kind of interoperability mechanisms for

the generation of connectors. Moreover, the use of connector units allows the expression

of the inherent distributed nature of connectors, discussed earlier.

Thus, while the connector frame defines a basic connector type, connector

architecture describes the functionality of the connector. Since, there could be several

ways to implement a given connection type, therefore there could be several architectures

implementing a single frame. The figure above depicts just one such architecture. The

decision could be based on the communication pattern desired between the two

components on the basis of the NFP constraint on the connection.

The [BUL00] also specifies a generator framework which allows for the

semi/fully automatic instantiation of the connectors based on the model above. The

framework is based on the life-cycle of the connectors and leads to an automatic

generation of the connectors based on certain inputs from the user. The assumption is that

 58

the specifications deciding the nature of the connectors to be generated exists and does

not attempt an answer to it. It addresses automation beyond this point. The issue however

can be addressed with the help of the GDM of the UniFrame approach which can decide

the QoS constraints on the connectors mediating between the components based on the

QoS composition/decomposition model and the nature of the connectors based on the

requirements of the system under consideration. The connection is attempted and

proposed in the Chapter 6 with respect to the generation of connectors for connecting

heterogeneous discovery services. In addition, the validation of the model in [BUL00] is

carried out with respect to Java RMI and CORBA components using the same language,

Java. An extension of the work consists of applying the principles of connector

generation to a non-Java language based component model such as .NET. Chapter 6

provides for such an approach targeting .NET and Java RMI. However, the design of the

generator is out of the scope of the thesis.

The chapters till now have discussed the .NET component model from the

perspective of seamlessly encompassing the components developed using this model

under the framework of UniFrame. Chapter 2 introduced the framework and outlined

some of the interoperability bridges between components of .NET and Java component

model. Chapter 3 addressed the problem of heterogeneity from a similar perspective and

also mentioned Web Services as one of the interoperability mechanisms. However this

gives rise to one question – can .NET only be incorporated as a part of the UniFrame?

Could the two frameworks also complement each other? What aspects need to be

considered while finding a solution to these questions? The following chapter is an

attempt in this direction.

 59

4 UNIFRAME IS NOT WEB SERVICES – AN ANALYSIS

[MIC04] defines .NET as: “Microsoft® .NET is a set of software technologies for

connecting information, people, systems, and devices. This new generation of technology

is based on Web services—small building-block applications that can connect to each

other as well as to other, larger applications over the Internet.” Thus, it is evident that

Web Services form one of the inherent features of the .NET framework. The main

components of the Web Services, namely, SOAP, WSDL, UDDI and XML, were

discussed in Chapter 2 and Chapter 3 also described Web Services as an interoperability

mechanism for different component models. However, with a whole set of standards

associated with the Web Services, they can also be considered as a framework that allows

developing component-based software solutions for distributed systems. The advantages

of distributed computing resources (as discussed in Chapter 1) are significant and have

necessitated the availability of such frameworks that could facilitate the efficient

integration of distributed resources. Innovations in this field have led to the development

of other such frameworks as Enterprise Application Integration (EAI) solutions, Business

Integration (BI) Solutions, Open Grid Services Architecture (OGSA), and UniFrame.

Defining the role of Web Services in this manner raises a question – are UniFrame and

Web Services based on the same principles and do they achieve the same end-result?

These questions are often manifested as misconceptions leading to an ambiguous

understanding of each of the frameworks. Web Services form an integral part of the .NET

distributed paradigm. Since, the goal of the thesis is to analyze the two paradigms of

.NET and UniFrame with a synergistic approach exploring if there are any possibilities

where the two paradigms can complement each other or what are the characteristics of

the .NET component model which the UniFrame approach can subsume or extend;

 60

answering these questions becomes an important aspect of the thesis. Hence, as per the

focus of the thesis, it becomes important to provide a clear understanding of this facet of

.NET, namely Web Services in the context of UniFrame. This chapter accomplishes this

task, namely – analyzing the Web Services and UniFrame paradigms [GUP03].

At the basic level, any paradigm that entails an ensemble of heterogeneous

components has the following characteristics:

� Development framework for Composable components.

o Whether any special technique/tool is required or components could be

developed on any computing platform.

o Kind of components supported by the architecture (hardware resources/

software resources/ object model-based components).

o Description about the components.

� Publishing of components on the network.

o Process of making the components known to others.

� Discovery and composition of components.

o Mechanism to discover and integrate the selected components.

All the above characteristics are evident in both the UniFrame and Web Services

paradigm. However, there are certain details which make a difference in the way the end-

result is achieved using these two paradigms. Hence, to provide a comprehensive analysis

of the two paradigms, the comparison proceeds in two folds, a) Architecture-based

Comparison and b) Model-based Comparison. Architecture-based comparison outlines

the differences in the characteristic features of the fundamental architecture of the two

frameworks in terms of the basic underlying principles. Model-based comparison focuses

on the differences that are evident in the model employed by the architecture at a more

abstract level. Comparisons at both the levels are of significance for a detailed evaluation

methodology. The next section outlines the architecture-based comparison of the two

models and Section 4.2 outlines the model-based comparison.

 61

4.1 Architecture-based Comparison

Table 4.1 indicates the detailed comparison, from the perspective of the

underlying architecture, for both the approaches. The metrics used for the comparison are

based on the above mentioned desirable characteristics of any component-based

framework.

Table 4.1 Architectural comparison of Web Services and UniFrame paradigms

 WEB SERVICES FRAMEWORK UNIFRAME

OBJECTIVE

To provide a set of related standards
which allow building of dynamic,
loosely coupled systems composed of
services, not bounded to any
implementation and can be
published, described, located and
invoked over a network, more
generally World Wide Web.

To create a comprehensive framework
that unifies the existing and emerging
distributed component/service models
under a common meta-model, that
enables the discovery, interoperability,
and collaboration of components via
generative software techniques.

GENERAL
FRAMEWORK/

ARCHITECTURE

Figure (a) Web Services’s overall

process

Figure (b) UniFrame’s overall process

OVERALL
PROCESS

� Service Development and
Deployment (leveraging all
different platforms to one
standard of Web Services) using
different Web Services
development tools and software
provided by vendors.

� Formal description of services
(WSDL).

� Registration of services with
UDDI (publish).

� Developing components using a
specific component model
(DCOM/RMI/CORBA/.NET/Web
Services) and associated UMM
specifications.

� Querying the UniFrame for creating
a system with desired Quality of
Service parameters.

� Select, out of the discovered
components.

 62

Table 4.1 Continued

OVERALL
PROCESS
Continued

� Discovery of services (Find) using
the registry API – directory
service.

� Binding with the Service (Bind)

� Compare to see if the test results
with the discovered components
satisfy criteria.

� Refine Query or select alternate
components to re-build the system.

SERVICE/

COMPONENT
DEVELOPMENT

&
DEPLOYMENT

� Development using frameworks
that support them (e.g. .NET) or
using different object models,
which are then leveraged as
services using the toolkits that
support the technology.

� Registering Services with the
UDDI public/private registry.

� Components are developed using
inherent mechanism.

� Deployment also under the same
model with extra infrastructure
provided by UniFrame to support
seamless interoperation and system
generation.

DESCRIPTION
OF
COMPONENTS/
SERVICES

Web Service Description Language
Document (WSDL file – XML).

UniFrame Meta-Component Model
Description (UMM Specifications –
informal text and XML)

DISCOVERY

Discovery through the UDDI
Business or private registries (static
registries)

Discovery through a search process
involving active entities – headhunters
and active registries [UniFrame
Resource Discovery Service (URDS)
Framework].

INTEROPERA-
BILITY
OF
SERVICES/
COMPONENTS

XML (standard for data exchange)
and SOAP (Simple Object Access
Protocol).

Automatic generation of glues and
wrappers.

SYSTEM
INTEGRATION

� A hand-crafted approach wherein
the responsibility of integration
lies with the application developer
by means of APIs of the Web
Services.

� Need to incorporate Web Services
interfaces and integration
capabilities within the existing
“application integrating” tools and
products.

A comprehensive model-based
approach forms the backbone of the
system integration process right from
the initial stages. The model follows an
architecture-centric, domain-based and
a technology-independent approach.
The process may be manual,
completely automatic or a mix of both.

RELIABILITY
OF
COMPOSED
SYSTEM

Reliance on a third party (Web
Service Auditors) which guarantees
the reliability of a web service on
basis of testing and certification
during its creation as well as
operational stage.

Reliability based on test cases and
formalism and a strong mathematical
foundation of event traces and two
level grammar.

ADVANTAGES

� Builds upon open text-based
standards (XML), thus aiding in
interoperability.

Contd…

� No requirement of additional
software tool to build components.

� Automatic generation of glues and
wrappers.

� Quality of Service validation and
assurance through event traces and
formal domain knowledge; backed
by a mathematical foundation.

 63

Table 4.1 Continued

ADVANTAGES

Continued

� Less additional cost involved in
adoption, since employs existing
infrastructure (Internet) and
applications can be repackaged as
Web Services.

� Use of aspect-oriented programming
to weave in the notion of QoS into
the framework distinguishes
UniFrame.

� Active search process involving the
notion of “headhunters”.

LIMITATIONS

� Relatively new; standardization in
progress, hence, Web Services
created with current tools will not
be compatible with the future
technologies.

� Use of text-based standards,
XML, for communication may
affect performance in some
critical. Applications.

� No standardized methods devised
for assuring and validating
Quality of Service; Use of third
party “web service auditors”.

� No standardization reached yet.
� Experimentation and performance

evaluation at a large scale and in a
realistic domain not complete.

As is evident from the tabulated comparison, both UniFrame and Web Services

build on the notion of Service Oriented Architecture. However, based on their different

standpoint, the notion of service in each case has different implications. For the Web

Services paradigm, a service is “any software component which is accessible through

standard web protocol [THU01]”. UniFrame defines its concept of service as “an

intensive computational effort or access to underlying resource [RAJ00]”. While Web

Services attaches a set of technology specifics in its point of view of a service, UniFrame

adopts a very generic view. Thus, results the difference in the way each paradigm handles

their integration.

In case of Web Services, the integration platform is provided by means of

standardization of four basic parts of an integration procedure, namely, a) Representation

and transfer of data, b) Extensible message-processing format, c) Service description

language, and d) A way to locate services. The general architecture under which

integration of heterogeneous business processes in carried out using Web Services is

based on these standards and can be depicted with the help Figure (a) in Table 4.1.�

Service Publishers register their web services and their descriptions with multiple

operator nodes on the network that provide a cloud of internet-wide repositories of Web

 64

Services metadata. These nodes implement the UDDI specifications and are publicly

available. The UDDI directory exposes a set of APIs in the form of a SOAP-based Web

Service, both for the publishers and the requestors of services. By the means of these

APIs, the clients can locate the service that meets their requirements. The protocol

employed is the DISCO (Discovery) Specification that defines an algorithm that enables

the client to locate the service descriptions of the service. If the Web Service Client

knows the location of the service descriptions, the above discovery process could be

bypassed. Once the location of the service description is known to the client, the client

makes a judgment of the services offered by the client and the mechanisms to invoke it.

This description could be utilized in the generation of a proxy of the remote service and

hence aids the developer to include the functionality of the service in its application. The

functionality of the service could be invoked using the standard wire-formats of the web

services, namely XML data structures over HTTP. In a similar manner, an application

could incorporate the services of multiple web services which it discovers over the

network. A method is invoked on this service and the results are then obtained back after

the necessary processing. The result is a distributed application employing a more or less

point-to-point communication from the perspective of the client that carries out the

necessary integration to construct the system at hand. Integration procedure follows a

hand-crafted approach based on the decisions of the client for the services to be

integrated. To summarize it, Web Services are a collection of technology standards which

by themselves, do not constitute a service-oriented architecture, but only enable it.

On the other hand, the UniFrame’s approach is to provide a comprehensive

framework for the software realization of a DCS, which aids in its design, taking into

account all the challenges associated with the inherent features of a DCS such as

heterogeneity, local autonomy and open architecture. The overall process of system

assembling under the UniFrame approach is discussed in detail in Chapter 2, Section 2.1.

Figure (b) of Table 4.1 also depicts this overall process. UniFrame’s approach is centered

around the existence of an extensive knowledgebase for a GDM that provides the basis

for constructing DCS solutions over problem space. The knowledgebase is constructed by

 65

business domain experts who perform requirement analysis for a particular domain and

model the business context in that domain for which the DCS is to be constructed. They

derive the Business Reference Models and place them in the UniFrame’s knowledgebase

which define space of problems they can solve. Components are developed by developers

in their choice of component models using the native development techniques. Their

basic properties are then specified according to the standards established by the UMM.

Several Business Reference Models can share one component. The UniFrame system is

queried for a desired DCS. Based on the query, Business Reference Model is identified

along with the abstract definitions of the components that satisfy the Business Reference

Model. Concrete implementations for these abstract definitions are discovered from the

components deployed on the network. System is generated out of these components and

validated for its QoS against the given query requirements. If the system does not meet

the specifications, the process is repeated or the requirements are refined till a satisfactory

result is achieved.

Thus, though the objective of the two paradigms is the same, the underlying

approach differentiates them in terms of the process involved and the DCS constructed.

The above mentioned overall approach can be further analyzed by identifying and

evaluating different architectural metrics associated with the two paradigms. The

following sections now present a detailed description these fundamental metrics. These

are discovery services, service descriptions, registration mechanism and quality of service

assurances entailed by the two paradigms. �

4.1.1 Discovery Services

Web Services Discovery Process: The term discovery refers to the process of

locating “Web Services” by means of registries. This process is carried out by businesses

searching for services offering specific functionalities. Web Services Registries and

Brokerages facilitate the discovery process and enable interactions between the service

 66

providers and requesters. The discovery process is classified into two categories

[GUP03]:

� Direct Discovery: This kind of discovery involves obtaining data from a registry,

which is maintained by the service provider itself. It provides an advantage to the

service requester of the data having a higher probability of being more accurate and

recent.

� Indirect Discovery: The Service requester obtains data about a Web Service from a

registry, which is maintained by a third party organization. In this case, a service

requester has the facility to evaluate a number of Web Services before deciding on

any particular one. However, the freshness of the information available to the service

requesters depends on the frequency with which it is updated in these registries.

A service provider publishes the WSDL document containing the description of

its Web Service, with the UDDI, which makes locations of such WSDL files available to

a service requester. The Service Requester searches the UDDI based on certain criterion,

such as functionality or a Quality of Service (QoS) attribute. Once it discovers a service,

meeting its needs, it knows the method of accessing the Web Service by means of the

WSDL file. It can now communicate with the Web Service directly via SOAP messages.

There are a few other discovery technologies, which support the discovery of

Web Services apart from the UDDI specifications – ebXML [EBX] for example. ebXML

stands for “electronic business XML” and is an electronic business standard sponsored by

UN/CEFACT (United Nations Center for Trade Facilitation and Electronic Business) and

OASIS (Organization for Advancement of Structural Information Standards). It defines a

standard that allows services to find each other and conduct transactions based on well-

defined XML messages within the context of standard business processes which are

governed by standard or mutually-negotiated partner agreement. The ebXML provides

standards for specification of business processes, repositories for other services to

discover them and a mechanism for services to encompass them in order to support an

application (by means of a common transport mechanism for exchanging messages

 67

between organizations). In this context ebXML also falls in the category of the UniFrame

and Web Services paradigm. In addition, the ebXML standards also support the notion of

Web Services in all the 3 respects:

� services specifications (Web Services - WSDL, ebXML – Collaboration Protocol

Profile).

� publication and discovery (Web Services – UDDI, ebXML – ebXML Registry

Services).

� invocation (Web Services – SOAP and HTTP, ebXML – ebXML Messaging Service

based on SOAP and HTTP).

A service developer/organization can combine these technologies with the Web services

in order to take advantage of the features of both. For example, UDDI currently does not

support a security model whereas ebXML does as part of its ebXML Messaging Service

and so an organization can advertise its services through UDDI, on the other hand store

its trading agreements and contracts through ebXML.

However, in both the cases, whether it is UDDI or through the ebXML Registry

Services, the general procedure for discovery of Web Services is as depicted in the Figure

4.1. The basic underlying concept is: Web Services register their specifications in a

repository which are then searched by the interested clients. After retrieving the Web

Services specifications in which the client is interested in, the client can now invoke the

Web Service.

Figure 4.1 Discovery of Web Services

 68

UniFrame Resource Discovery Service (URDS) Framework: The URDS

framework [SIR01] supports the notion of automated discovery process of the UniFrame

paradigm wherein new services are dynamically discovered while providing the clients

with a directory-style access to the services. The services are searched based on their

quality requirements within an “administratively-scoped” discovery process. In other

words, the URDS framework locates services within an administratively defined logical

domain – in UniFrame a domain refers to industry specific markets such as Financial

Services, Medical domain and Manufacturing Services, etc. The URDS infrastructure

consists of the following parts: (a) the Internet Component Broker (ICB), (b)

Headhunters (HH), (c) Meta-Repository (MR) and (d) Active Registries (AR). All these

entities are arranged in a hierarchical structure making the discovery service scalable

allowing extending the search scope of the URDS by tuning the number of the different

entities participating in the discovery process. The scalability of the URDS framework is

further discussed in Chapter 5.

The ICB is the UniFrame’s analogous entity to the conventional request broker in

other architectures. However, in addition to performing the functions of a conventional

broker, it also performs other functions such as, it ensures the authentication of the

principals of the system (namely the Headhunters and Active Registries); cooperates with

other ICB’s deployed on the network to provide matchmaking between service producers

and consumers; and acts as a mediator between two components adhering to different

component models. The entities which constitute the ICB have been explained in detail in

Chapter 5. A Headhunter is equivalent to a binder or trader in other models. However,

unlike the trader, here the onus of registering components lies with the headhunter and

not on the components themselves. Hence, the headhunter is capable of detecting the

presence of service providers on the network, register the functionality of these service

providers and return a list of service providers, which matches the requirements of the

consumer requests forwarded by the Query Manager, to the ICB. The services are

discovered by means of Active Registries (discussed later), with which the services are

registered. The discovery process employed could vary from standard search techniques

 69

such as lookup discovery to broadcasts and multicasts to specific machines. What

distinguishes the URDS from a majority of the distributed discovery services proposed

and implemented by the industry and academia (some of them being Archie, Jini,

CORBA trader, Ninf etc.), is that the URDS architecture spans across heterogeneous

component models enabling the discovery of components developed on different

paradigms such as .NET, Java RMI, Web Services, etc. It also acts as pre-cursor in

enabling their participation in composing a heterogeneous distributed system. This is

done by enabling the search based on the UMM specifications (discussed next) of the

components and with the support for the discovery of “Adapter Components” which

participate in the generation of the glue-wrapper code for composing a heterogeneous

system. The main characteristics of the process under the two paradigms have been

tabulated in Table 4.2.

Table 4.2 Discovery process under Web Services and UniFrame paradigms

DISCOVERY PROCESS
 Web Services UniFrame

Characteristics

� Process of locating Web
Services to meet specific needs,
through registries

� Activated and Executed by
Service Requestors

� Process of locating components
satisfying the QoS parameters
specified in the query

� Activated by a “system” query
and automatically executed by
headhunters-active registries

4.1.2 Service Descriptions

Web Service Description Language (WSDL) Document: It is an XML document

for describing Web Services as a set of endpoints operating on messages containing

either document-oriented (messaging) or RPC-payloads. Service interfaces are defined

abstractly in terms of message structures and sequences of simple message exchanges and

then bound to a concrete network protocol and data-encoding format to define an end-

point. Related concrete end-points are bundled to define abstract end-points (services).

The WSDL is extensible to allow description of end-points and the concrete

representation of their messages for a variety of different message formats and network

 70

protocols [DIE03]. The WSDL file has five primary elements, which are used to describe

a Web Service and appear in the WSDL file in the following order:

1. <types> element : defines the various data types in exchanging messages.

2. <messages> element: describes the messages being communicated.

3. <portType> element: defines a set of operations and the methods associated with

those operations.

4. <binding> element: specifies protocol for various operations and describes how

to map the abstract content of the messages to a concrete format.

5. <service> element: groups a set of related ports (operations) together; specifies

the actual location (URL) of the Web Service on the server.

Figure 4.2 shows a WSDL document for a component of the type

“CashierValidationServer”. The service is named as “Cashier Validation Service”. The

different nodes of the file as discussed above can be seen for this service in the figure.

The five elements mentioned which make up a WSDL file can be grouped into the

following two categories: 1) Abstract Definitions consisting of the nodes, types,

messages, and port types, and 2) Concrete Definitions comprising the bindings and the

services nodes. The abstract sections define SOAP messages in a platform- and language-

independent manner; containing no machine- or language-specific elements. This gives

an abstract definition to a set of services that diverse Web sites can implement. Site-

specific matters such as serialization are relegated to the concrete descriptions. The

WSDL document for the Cashier Validation Service supports two roles in its interfaces,

“Validate User” and “Grant Access”. As an example, consider the type elements for

“ValidateUser” which defines this method with its corresponding data types – (���������	�
�
����������� ������������� �������������� 	�������	
��� ��� �� ���������	� �
�����������

������������� ����������������� 	�������	
��� ��� �.� This shows that the ValidateUser

accepts parameters userID and passwordID as int datatypes. The next set is the

<message> elements comprising the Messages section. If operations are considered as

functions, then a <message> element defines the parameters to that function. Each <part>

child element in the <message> element corresponds to a parameter. Similarly, other

 71

details of the elements, map the service interface specifications in terms of the port,

binding and service elements in the manner described above.

����������
��������������
� ��	!"#������
���!
�
	
����������$		���������������������������������������

��
��
����������������� �!�"���#������$��	��%�	��	�
���"	����
���
���	
����
������	�����������	�����&������������	�����������	
����
�������
�����������������������������������	�����
	�� �	%����������������� �!�"���#������'
(
���
��

�	������
�����$����������	&���'�!��	��)��	&	����
	�� �	%����������������� �!�"���#������'
(
����
���������	�������%�	���*�������("")*+,�'����!�-�.�/���
��""��
����������+�����
�����0������
���������	��
��������������������������������������	�������	
�������
���������	��
���	�������	
������
������0������
������������+�����

�� � ����������	��

���������	�������+%�	���*���,����
�����
����������+�����
�����0������
���������	��
������������������������������+%�	���*���,����
��,�������
	����������	
�������
������0������
�����������+�����
����������	��
�
���������	�������-�
�.��������
����������+�����
�����0������
���������	��
������������������������������	
�$��	������	�������	
�������
���������	��
������������������������������	
�,�������	�������	
�������
������0������
�����������+�����
����������	��
���������	�������+-�
�.�����,����
�����
����������+�����
�����0������
���������	��
������������������������������-�
�.�����,�������	����������	
�������
������0������
�����������+�����
����������	��
������$�����

���	������

�
������ ��������%�	���*�������
���

����	�����������������������	�����+%�	���*���������
������� ���
�
������ ��������%�	���*������/�����
����	�����������������������	�����+%�	���*���,����
��������

������� ��

Figure 4.2 WSDL description for a Cashier Validation Service

 72

������ ��������+-�
�.���������
���
����	�����������������������	�����+-�
�.�����������
������� ���
�
������ ��������+-�
�.��������/�����
����	�����������������������	�����+-�
�.�����,����
��������
 <������ ���

�
����	+����������%�	��	�
������
������������	
���������+%�	���*���,����
�����

 ��������	�	
���+%�	���*���,����
��0	
�+!�
���1+	
�+��	���2+3+*���+���+���+
&	����+��+����(+�	
+
+��	����������	�	
�����
 ��
��	������ ������%�	���*�������
������
 ���	�	������ ������%�	���*������/��������

 ����������	
����
�����������	
���������-�
�.��������

 ��������	�	
���-�
�.�����0	
�+	
�$��	����1+	
�+	
�,�����2+3+$���(�+���+��!��	���	�
+
���	
��+	
+
+��	�+���������	�	
�����
 ��
��	������ ������-�
�.���������
������
 ���	�	������ ������-�
�.��������/��������

 ��������	
����
�����	+�����
�
�.
��
� �������$��	��%�	��	�
���"	�������	��������+$��	��%�	��	�
���"	��������
 �������.
��
� �	�������	��������������������������������������	�����������
�������

������	
���������%�	���*������
�����������	
���

����1�	
����������� �!�"���#������$��	��%�	��	�
���"	���%�	���*�����
+ �	�����������
�������

�
��	��
 �� ������.���������	����������

 ���
��	��
��	�	��
 �������.���������	����������

�� � ���	�	��

 ��������	
����
��������	
���������4�	�%�	�������

�����������	
���
����1�	
�����	����� �!�"���#������$��	��%�	��	�
���"	���-�
�.�������
+ �	�����������
�������

�
��	��
�� � � ������.���������	����������

 ���
��	��

��	�	��
 �� � ������.���������	����������

 �� ���	�	��

 �������������	
����
��.
��
� ��
�
�����
���������$��	��%�	��	�
���"	�����

����	�������$��	��%�	��	�
���"	�������.
��
� �����+$��	��%�	��	�
���"	��������
��������������
����	
���������������'
(
����"	��������$��	��%�	��	�
�$��	��%�	��	�
���"	��
����������

 ������	��
������
����
 �����!
�
	
����

Figure 4.2 Continued

 73

UniFrame Meta-Component Model (UMM) Description: The discovery process

outlined in the previous section mentioned that the headhunters enable the discovery of

components on the basis of many factors including the quality requirements. As

mentioned in Chapter 2 (Section 2.1 - Introduction to UniFrame), the components under

the paradigm of UniFrame conform to a standard abstract component model. The UMM

specifications follow a one-to-one correspondence with the attributes of the components

as described in the abstract component model. Figure 4.3 depicts the informal

specifications of one such component, CashierValidationServer, which forms a part of

the abstract component model for an account management system in the domain of

Banking. The component

Abstract Component: CashierValidationServerCase1
1. Component Name: CashierValidationServer
2. Component Subcase: CashierValidationServerCase1
3. Domain Name: Banking
4. System Name: Bank
5. Informal Description: Provide Cashier validation service in banking.
6. Computational Attributes:
 6.1 Inherent Attributes:
 6.1.1 id: N/A
 6.1.2 Version: version 1.0
 6.1.3 Author: N/A
 6.1.4 Date: N/A
 6.1.5 Validity: N/A
 6.1.6 Atomicity: Yes
 6.1.7 Registration: N/A
 6.1.8 Model: N/A
6.2 Functional Attributes:
 6.2.1 Function description: Act as validation server for Cashiers in banking.
 6.2.2 Algorithm: N/A
 6.2.3 Complexity: N/A
 6.2.4 Syntactic Contract
 6.2.4.1 Provided Interface: IValidationCase1
 6.2.4.2 Required Interface: NONE
 6.2.5 Technology: N/A
 6.2.6 Expected Resources: N/A
 6.2.7 Design Patterns: NONE
 6.2.8 Known Usage: NONE
 6.2.9 Alias: NONE
7. Cooperation Attributes
 7.1 Preprocessing Collaborators: CashierTerminalCase1
 7.2 Postprocessing Collaborators: NONE

 Figure 4.3 Informal representation of the UMM specifications of a component

 74

8. Auxiliary Attributes:
 8.1 Mobility: No
 8.2 Security: L0
 8.3 Fault tolerance: L0
9. Quality of Service
 9.1 QoS Metrics: throughput, end-to-end delay
 9.2 QoS Level: N/A
 9.3 Cost: N/A

 9.4 Quality Level: N/A

Figure 4.3 Continued

developer provides the values to the various attributes of the UMM specifications after

the QoS validation of the component (as discussed in section 2.1) has been carried out

using the UniFrame QoS Framework [BRA02]. Like WSDL, these informal

specifications are then refined into an XML format for further processing, like WSDL.

An example of the XML representation of the UMM specifications has been shown in

Figure 5.7 for the same component as in Figure 4.3. However, it should be noted that

UniFrame does not bind itself to the use of XML and allows other standard formats for

the specifications representation. In addition, since the UMM specifications of a

component are in accordance to the knowledgebase for a pre-defined business reference

model, it requires the component to advertise not only the manner in which it participates

in the application but various other details as part of its service specifications. These

details include features such as “Pre-Processing” and “Post-Processing” collaborators

which define the interface specifications of the pre-processing and post-processing

dependencies of the component respectively, with respect to the abstract component

model specified as the Business Reference Model by the UniFrame’s knowledgebase.

This in turn helps the in the automation of the composition of the DCS at the higher level.

The UMM specifications also enhance the proposal of a multi-level contract for

components proposed by Beugnard, Jezequel, Plouzeau, and Watkins (1999) [RAJ03].

They advocate that the contract of a component be made up of four levels: syntactic-

level, behavioral-level, synchronization-level, and quality-level. The concept of a

component specification in UMM goes beyond of what is proposed by Beugnard et al., in

that it allows for the statement of various other details such as bookkeeping,

collaborative, algorithmic and technological information, possible levels of service with

 75

associated costs and effects of different environmental factors on the QoS parameters.

The multi-level specification also aids in providing a better match during the discovery

process.

Thus, while the WSDL document primarily indicates a web service’s functions,

such as input/output parameters and the transport protocols, the UMM specifications of a

component play a more integral role in advertising the component and its composition in

a distributed system.

4.1.3 Registries/Repositories

Web Services Registries: The Web Services framework supports two kinds of

repositories - UDDI and WEB SERVICES Brokerages.

UDDI: The UDDI standardization provides for “searchable Web Services Registries”

which facilitate the storage, discovery and exchange of information about businesses and

their Web Services. UDDI is implemented in two forms:

UDDI Business Registry: publicly accessible and maintained by Microsoft, IBM, Hewlett

Packard and SAP.

UDDI Private Registry: accessible only to authorized users.

The various entities involved during the utilization of UBR (UDDI Business

Registry) [DIE03] are:

Operator Nodes: The organizations that host the implementation of the UDDI Business

Registry are Microsoft, IBM, SAP, and Hewlett Packard. UBR operates on the principle

of “register once and publish everywhere”. This in turn implies a replication of the data

within the operator nodes so that all instances of records are identical with each node.

Operator nodes synchronize their information at least every twelve hours.

Custodian: The custodian for a company is the operator node with which it publishes its

web services. A company can register and update its information only through its

 76

custodian. This prevents multiple versions of the data from entering in the four different

operator nodes.

Registrar: These organizations do not host implementations of the UDDI but act as

assistants for organizations in creating data (such as business and service descriptions)

and publishing in the UBR.

Structure and Information Model of UDDI: XML forms the basis of the overall

information structure of UDDI which can be broadly divided into following information

levels:

White Pages: General information about the provider, such as its name, contact

information and identifiers.

Yellow Pages: Categorization of the providers’ information based on their

services.

Green Pages: Technical information about the provider’s services or products.

Usually contains references to the WSDL documents of the services enabling the

client to know as to how to interact with the Web Service.

UDDI supports certain APIs for the clients to use the registry. These include:

Publishing API – It supports the publish operation on the UDDI Registry. The access to

this API is restricted to authorized users only. Operator nodes implement a form of

Authentication protocol to allow legal organizations to access this API. By means of

publishing API, an organization is able to execute commands to create and update

information in its operator node.

Inquiry API: Supports the find operation in three different patters (browse, drill-down and

invocation). This API is accessible to any individual on the UBR who wishes to locate a

service or a kind of service.

Web Service Brokerages: The Web Service brokerages are web sites that house

information about the available Web Services in the form of a list, along with their web

addresses. These brokerages can also supply additional services, which can include

advanced search capabilities based on category, organization name or schema type,

 77

service monitoring and service support, which can include services-related resources such

as a tool that validates WSDL documents. Examples of some of the current Web Services

Brokerages are: Allesta Web Service Agency, SalCentral Service, Xmethods and

serviceFORGE.

UniFrame Registries: In the case of UniFrame, the entity that houses the

information about components developed using a particular model is local to that

component model. This entity is named “Active Registry”, and is an enhanced version of

the native registry of the corresponding object model. It has features such as:

Activeness – ability of the registry to listen to multicast messages from the

headhunter and then establish communication, and

Introspection Capabilities – capabilities to introspect the registered components

for their UMM specifications.

The conceptual difference that exists between registries of the two frameworks is

in the way the registries participate in the discovery process of the components. In the

case of the WEB SERVICES framework, the onus of locating components lies in the

hands of the service requesters. While in UniFrame, the emphasis is on the automated

discovery process provided by means of the URDS. Whether an organization needs to

deploy one active registry per machine or one per many, is not decided and could vary

depending on the size and necessity of the organization. While a service requester and

publisher has to confirm to the underlying implementation of the UDDI registry as

preferred by the company hosting it, the Active Registry is not as rigid and constraint

since it builds upon the same native technology used for the development of components

registered with it. The following table outlines the main differences in the registration

mechanism of the two paradigms.

 78

Table 4.3 Registration mechanism in Web Services and UniFrame paradigms

 REGISTRY

Characteristics

Web Services – UDDI

UniFrame – Active Registry
 UDDI Business

Registry
UDDI Private
Registry

Maintained
By

Microsoft, Hewlett
Packard, IBM and
SAP

The Company
hosting the web
services, for its
private use

The entity hosting the components to
be registered in that Active Registry

Discovery Indirect Discovery Direct Discovery Part of the UniFrame Resource
Discovery Service Framework

Access Public access
(Both Individuals
and organizations)

Only to Authorized
members, decided
by the company
which hosts the
registry

Organization hosting the components
in that Active Registry

Contents

Locations of
WSDL Documents

Locations of
WSDL Documents

Reference to the registered
components. The UMM specifications
are periodically retrieved from the
components to ensure the freshness of
the specifications

Interface Custom APIs of
the UDDI
specifications

Custom APIs of
the UDDI
specifications

Native to the component model in
which the Active Registry

4.1.4 Quality of Service Assurances

Quality of Service Assurances in Web Services: Currently, service providers

typically employ third parties to audit their Web Services during the creation stage as

well as for reevaluation of the service on regular basis. An auditor achieves this in the

form of testing and certification. Auditors may also be employed by the service

requestors in order to gain a kind of guarantee about the level of service offered by the

Web Service. The entire scenario employs “Service Level Agreements (SLA)” [DIE03].

These are “legal contracts in which a service provider outlines the level of service it

guarantees for a specific Web Service”. When customers purchase the Web Services

subscription, they receive the services according to the quality-related contents specified

by the SLAs. The service developer may maintain the SLAs. As the contents of the SLA

are determined by the participating entities, there are no formal guidelines to specify the

 79

level of service a particular Web Service provides. The QoS requirements, which SLAs

of Web Services’s outline, include availability, accessibility, integrity, performance,

reliability, conformance to standards and security.

Quality of Service framework of UniFrame: Under the UniFrame paradigm, the

components provide their QoS assurance to the interested clients by employing the UQoS

framework. The UQoS framework provides a set of guidelines and the necessary

platform that facilitates the publication, selection, measurement and validation of the QoS

parameters of the components (as well the composed system). This is achieved by the

framework with the help of three parts to its approach. These are: a) QoS catalog, b)

specification and measurement of QoS and c) composition and decomposition models for

QoS parameters [RAJ03]. The component developer is provided with the QoS catalog

which helps him to select and specify the necessary QoS values to be included in the

UMM specifications of the component. As introduced in Section 2.1, the catalog acts

provides the necessary vocabulary related to various QoS parameters that are important

and need to be considered by the developer while developing components specializing in

a specific domain. It also provides the well-accepted measurement models for the

parameters. Since every domain has its own constraints with respect to the QoS

attributes, the catalog aims to act as a checklist for both the component developer and a

client interested in identifying and validating its QoS attributes. The static QoS

parameters of a component can be measured by the component developer using the

measurement models enlisted in the QoS catalog. However, if the parameter is dynamic,

i.e. its value changes with the environment of the system execution, measurement model

alone cannot suffice. Its value needs to be determined by an empirical execution of the

component. The UQoS framework uses the principles of event grammars [AUG00] for

the measurement of dynamic QoS parameters with respect to different environment

configurations and usage patterns. Unlike Web Services, UniFrame’s QoS framework not

only focuses on assurance of component QoS but also of the generated system. The

UQOs comprises of the composition and decomposition models for the various QoS

parameters discussed in the QoS catalog; in the form of a set of rules to predict the QoS

 80

values of an integrated system from given specific values of the component and vice-

versa respectively. UniFrame’s iterative approach to system assembly from components

meeting user’s query specifications is based on constructive calculations of QoS metrics

on representative set of test cases.

Quantifying the quality of service of the individual Commercial Off The Shelf

(COTS) components, which compose to form an integrated system with a predictable

quality, is one of the critical part of the UniFrame Approach. The features of the UQoS

framework can thus be enlisted as:

� An existence of a QoS catalog containing detailed descriptions about QoS attributes,

their classifications, their evaluation methodologies and the interrelationships with the

other attributes.

� An integration of QoS at the individual component and distributed system levels.

� The validation and assurance of QoS, based on the concept of event grammars.

� An investigation of the effects of component composition on QoS; involving the

estimation of the QoS of an ensemble of software components given the QoS of

individual components.

� A QoS-centric iterative component-based software development process to ensure

that the end product matches both the functional and QoS specifications.

Table 4.4 briefly tabulates the notion of QoS assurance of Web Services and components

under the UniFrame paradigm.

Table 4.4 QoS assurance under Web Services and UniFrame paradigms

QoS ASSURANCE

Web Services UniFrame
� No specific formula guides the creation of the

contracts (Service Level Agreements)
� Guarantees based on third party reliance and

testing tools provided by them

� Each UMM Component can formally
incorporate quantized QoS attributes

� QoS metrics to advertise a component’s
level of service

� Guarantees based on evaluation
methodologies with mathematical
foundation

 81

The above outlined architecture-based comparison provided comprehensive

details of the architecture-related aspects of the Web Services and UniFrame. It indicates

the differences in the adoption of the methodologies for the different areas of achieving

system integration based on identified metrics. The next section now enlists the

characteristics which are associated with the overall system integration model of the two

paradigms and will be inherent to any system developed using these frameworks.

4.2 Model-based Comparison

� As mentioned in Section 3.3, Web Services are all about XML and it being a text-

based standard. This in turn implies delays involved in parsing it, which may prove

vital in performance-critical applications. XML uses two sets of redundant tags to

mark up every piece of information it represents. The tags are usually written to be

humanly readable, which makes the actual tags a lot longer than they need to be.

Also, one character in a Unicode document can be up to four bytes. Four bytes in

some other proprietary binary format used by technologies such as DCOM or RMI

can hold a lot more information than just one character. The ability to serialize the

data over a connection, parse it quickly and efficiently is what plays a vital role in

applications interacting over the network [WEB02]. UniFrame, on the other hand,

leverages the components in a way so that they are a part of an application while

remaining within their own object-model. This allows for more efficient ways of

communication.

� HTTP is the preeminent protocol to transfer Web Service content and is allowed a

free access through firewalls. HTTP, although used almost everywhere because of its

reliability and ubiquity, is also not the most efficient transport protocol [WEB02].

Some of the disadvantages of using HTTP as the communication mechanism were

discussed in Section 3.3. HTTP relies on a constant connection between the client and

server when a request is made. This constant connection causes an overhead in cases

when the data that needs to be transferred is quite small. However, in the Web

 82

Service’s universe, many transactions are essentially asynchronous. This in turn

implies that the response of a web service request is not guaranteed. HTTP was not

meant to deal with this kind of asynchronicity. It also relies on only one side initiating

communication and the other side only responding to the request. This approach

inhibits true peer-to-peer exchanges through Web services. A newer version of HTTP

aims to fasten communications by making use of compression, but some of the

previous issues still need to be pondered upon. Other protocols such as SMTP, over

which Web Services can be implemented, still do not provide a major breakthrough in

this respect. The UniFrame’ approach to achieve communication between two

components is through the use of glues and wrappers. These are generated at the time

of system composition and are flexible to allow the incorporation of different

communication protocols for component interactions. This is due to the fact that the

glue-wrapper generation approach can be based on the notion of connectors (based on

the connector model outlined in Chapter 3) and parameterization of the connectors

can depend on the components to be connected. Depending on the type of

communication involved between the components, for example, data streaming,

event-based or message passing, appropriate communication mechanism is

incorporated in the connector. Thus, as UniFrame does not attach itself to a specific

protocol, it can avoid some of the drawbacks, discussed above, and related to the

usage of HTTP.

� There is a growing need by today’s IT industry for an information highway for both

internal application integration and electronic partner integration. This divides the

“integration” process into the two categories of EAI (Enterprise Application

Integration) and B2B (Business To Business) integration (or BI solutions introduced

in Chapter 3). While EAI software or middleware provides the infrastructure to

rapidly connect and interface information between an organization’s internal

applications, B2B connectivity solutions’ focus lies in leveraging a corporation’s

partnerships with suppliers and customers by integrating their applications and

business processes with these partners.

 83

Though these technologies share several fundamental architectural principles,

they possess different requirements. Some of the ones which distinguish them have

been tabulated below.

Table 4.5 EAI and B2B Solutions requirements [PIN01]

EAI Solutions

B2B Solutions

User and Transaction security Document Security
Full Application Integration Just enough partner integration (i.e.

whatever the interacting partner can do)
Process Automation Document Exchange automation
Real-time communications and message
delivery

Communications and message delivery
that fit the partners’ capabilities

Solutions must be robust for reliability,
scalability etc.

Solutions must be good enough to
communicate with partners

Standardize and leverage object data across
systems

Work with numerous data definitions and
standards

The Web Services at this point are new and still not standardized in the sense

that they do not explicitly support strategic considerations such as security,

transaction handling, or session contexts (although standardization for some of these

topics are in progress as a part of the Global Web Services Architecture). These

requirements usually prove to be of utmost importance in EAI environments. The

loose coupling and disconnected nature of Web Services guarantees that the request

and response scenarios will be somewhat unreliable, and the ability to hold a session

or transaction context over a long period of time is unpredictable [WEB02]. ebXML

(as discussed in Section 4.1.1) uses a top-down approach to produce a solution that

more appropriately addresses large-scale business-to-business (B2B) scenarios. Web

Services have general purpose architecture with inherent interoperability that supports

B2B scenarios but UniFrame extends beyond in scope and functionality.

The above discussion indicates that though Web Services do not seem a good

candidate for EAI solutions but an effective and flexible B2B solution. Organizations

globally are becoming aware of the importance and need of integration across

 84

disparate platforms. An organization with numerous applications needs EAI solution

and corporations that are extending their processes with partners need B2B. The

future holds potential for a solution set that provides the functionality for both the

requirements frameworks. The UniFrame with its unbiased approach towards any of

them is an attempt in this direction.

� Although UDDI registries, both public and private, offer a great deal of advantage in

terms of an application integration of the participating companies, they have their

own set of limitations too. Firstly, because UDDI is fairly new, it has not reached

standardization in a complete way, which holds true for UniFrame as well. Secondly,

the UDDI Business Registry poses the question of data reliability. UniFrame does not

involve the notion of publicly accessible registries. The Active Registries only allow

authorized entities to publish components and interacts with the headhunter, thereby

reducing the threats of data compromise. The discovery mechanism of the UMM

Framework involves the headhunter storing the data about the components after it

retrieves it from the Active Registries. The duration of the time interval after which

this process repeats itself can be controlled so as to guarantee the freshness of the data

within the meta-repository of the headhunters. UDDI registries, although describe

web services, do not evaluate them. It does not house the Quality-of-Service

information about a web service and requires an extensive search on the service-

consumers part to do so. UniFrame on he other hand, provides an extensive Quality-

of-Service framework to do so.

The above discussion indicates that requirements for an integration platform vary

over a wide range of characteristics and require the addressing of numerous challenges

such as service descriptions, communication mechanisms, QoS service assurance, service

registration and discovery, etc. Web Services and UniFrame are both attempts in this

direction. The differences indicated outlined clear certain ambiguities that might persist

in the perception of the two models providing a better relevance to DCS requirements.

 85

The next section now investigates as to the possibilities of collaboration between the two

models for a more comprehensive DCS solution.

4.3 Web Services and UniFrame Collaboration

As outlined above, the WS and UniFrame differ in their approaches and

associated implementation techniques. However, they can complement each other to

provide solutions for future distributed systems. UniFrame uses the GDM [CZA00] to

describe the properties of domain-specific components and to elicit rules for assembling

heterogeneous components. One possible approach to integrate WS in UniFrame could be

to use WS as a mechanism to wrap heterogeneous components. Due to the open nature of

WS, such an approach will ease the task of assembling heterogeneous components

adhering to existing and new object models. Furthermore, since WS are weak in

representing the business semantics of application domains, this will also lead to the

enrichment of WS technology in terms of semantic representation by following a model

driven approach for specific domain-specific component models. UniFrame can then

automatically generate WSDL from the models with the help of generators. This is an

area which needs further exploration and investigation and is out of the scope of the

current context.

The chapter identified certain metrics of comparison between the Web Services

and the UniFrame paradigms. The discussions also surfaced many of the differences that

exist in between the two approaches in composing distributed systems. One of the

identified metrics was the process of discovery and registration as carried out in the two

models. This has created a foundation that leads towards the next goal of adapting the

UniFrame discovery system to the .NET component model.

 86

5 .NET-BASED UNIFRAME RESOURCE DISCOVERY SERVICE

As mentioned in the introductory chapter, the second objective of the thesis is to

study the adaptation of the UniFrame’s approach into the .NET component model. This

chapter focuses on this objective. One of the experiences gained from the analysis

performed in Chapter 4 was the identification of the different areas of the UniFrame

model which can help assess the functionality of the framework when adapted into a

specific component model. The URDS architecture belongs to the category of such

identified areas; others being registration mechanisms, description of components and

their QoS validation, etc. UniFrame’s approach for creating a meta-model to compose

heterogeneous distributed computing systems with QoS constraints necessitates the need

for a scalable and automated discovery service which is capable of registering and

locating heterogeneous software components belonging to a wide range of component

models and which can be discovered on the basis of their service specifications and

criteria. This requirement led to model of the URDS and also makes it a significant area

to explore in terms of variation and heterogeneity within the architecture. The URDS was

briefly introduced in Chapter 4 along with some of its main constituents, namely the ICB,

Headhunters and the Active Registries. The aim of this chapter is to discuss the

adaptation of the platform-independent model of URDS into the platform-specific model

of .NET. The chapter outlines the issues that were faced during the experience. In

addition, the performance of the adaptation is also analyzed with respect to another

platform-specific realization of the architecture created using Java RMI [MYS04]. The

creation of a platform-specific .NET URDS architecture, helped to analyze both the

performance and the functionality of the URDS architecture and at the same time helped

to assess the adaptability of the URDS architecture in more than one component models.

 87

The following sections provide a detail description of the URDS and its experimentation

with the .NET Computing Model.

5.1 General Architecture

The Architecture of the URDS, as proposed in [SIR01], is organized as a

federated hierarchy and is depicted in Figure 5.1. The figure shows that at the topmost

level is the Internet Component Broker (ICB). The ICB acts as an all-pervasive

component broker in an interconnected environment. It encompasses the communication

infrastructure necessary to identify and locate services, enforce domain security and

handle mediation between heterogeneous components. The ICB consists of a collection

of services comprising of:

Figure 5.1 The URDS Architecture [SIR01]

 88

Query Manager (QM): The purpose of the QM is to translate a system

integrator’s natural language-like query into the structured query language statement and

dispatch this query to a selected Headhunter, which returns the list of service provider

components matching these search criteria expressed in the query. The criteria used for

selecting a particular headhunter are based on many factors such as the domain of the

query. Requests for service components belonging to a specific domain will be

dispatched to Headhunters belonging to that domain. The QM, in conjunction with the

Link Manager, is also responsible for propagating the queries to other linked ICBs.

Domain Security Manager (DSM): The DSM serves as an authorized third party

that handles the secret key generation and distribution and enforces group memberships

and access controls to multicast IP address resources (that it assigns to its principals,

namely the headhunters and the active registries to enable communication) through

authentication and use of access control lists (ACL). DSM has an associated repository

(database) of valid users, passwords, multicast address resources and domains.

Adapter Manager (AM): The AM serves as a registry/lookup service for clients

seeking adapter components. The adapter components register with the AM and while

doing so they indicate their specialization, i.e., which component models they can bridge

efficiently. When the process of system composition entails components selected from

different component models, there arises a need for the client (or the Glue-Wrapper

Generator in this case) to contact the AM to search for adapter components that can

match the needs of the client in terms of bridging different component models. This

thesis also explores the issue of interoperability and provides a link to the concept of

Adapter Components and Adapter Manager (in Chapter 6). However, a detailed

discussion and implementation of adapter components, adapter manager and the

associated connectors are not explored in this thesis.

Link Manager (LM): The LM serves to establish links with other ICBs for the

purpose of federation and to propagate queries received from the QM to the linked ICBs,

 89

if necessary. The LM is configured by an ICB administrator with the location information

of LMs of other ICBs with which links are to be established. The LM is further discussed

in detail in Chapter 6.

Headhunter (HH): The Headhunters perform the following tasks: a) detect the

presence of service providers (exporters), b) register the functionality of these service

providers, and c) return a list of service providers to the ICB that matches the

requirements forwarded by the QM. The service discovery process performs the search

based on multicasting.

Meta-Repository (MR): The Meta-Repository is associated with every Headhunter

and serves as its local data store to hold the UniFrame specification information of

exporters adhering to different models. The repository is implemented as a relational

database.

S1…Sn: Services offered by components adhering to different component models

(RMI, CORBA, etc.). These are identified by the service type name and the component’s

UniFrame specification which is stored as an XML specification outlining the

computational, functional, co-operational and auxiliary attributes, along with zero or

more QoS metrics for each component.

AC1…ACn: Adapter components, which serve as bridges between components

implemented in different models.

C1…Cn: Component Assemblers, System Integrators, System Developers

searching for services matching certain functional and non-functional requirements.

 90

5.2 The .NET URDS-specific Architecture

The .NET-based URDS is a realization of the architecture discussed in the

previous section with services being implemented using the .NET paradigm. A similar

realization of the URDS using Java RMI paradigm is also implemented and experimented

with [MYS04]. The aim of this .NET-based implementation is to highlight the

technological differences that arise when the same service architecture is implemented

under two different technologies. The main features of the RMI based URDS can be

found in [SIR01]. This section describes the .NET URDS, specifically emphasizing the

modifications needed because of the .NET paradigm.

The .NET URDS architecture uses .NET Remoting framework. This framework

enables the development of distributed applications and is analogous to the Java-RMI

framework. This factor is one of the reasons that led to the choice of the framework for

implementation of the discovery service. The other factors, which contributed to

choosing Remoting over Web Services, are as follows:

� Web Services can be built using any technology on any platform. Web Services

provide a standards based and open communication medium while .NET

Remoting is more proprietary to .NET. Since the focus of this exploration is to

deal with principles unique to .NET and also to keep the option open to future

extensions to incorporate Web Services, the implementation has been carried out

with the Remoting framework.

� Generally, the term “.NET Web Services” implies “ASP.NET Web Services”.

However, in a distributed scenario, where Remoting enables the tuning of

different features of the .NET distributed paradigm (such as the use of faster

binary format over XML for the communication) to suit an application’s

requirements, it can provide with more performance and capabilities than

ASP.NET Web Services.

Hence, all the entities of .NET URDS are implemented using the Remoting

platform. Figure 5.2 shows the interactions between the main entities of the .NET URDS

 91

[FRE02]. The figure shows the manner in which the communication between the three

different entities - DSM, HH and AR, of the .NET-based URDS is carried out. The basic

functionalities of each of these entities are what is defined by the URDS architecture and

discussed in the previous section. The figure highlights the .NET specific communication

mechanisms adopted and have been outlined in the following steps:

Figure 5.2 Communication between HH, AR and DSM in .NET URDS [FRE02]

1. The DSM Front end is hosted as a .NET application and hosts the remote server,

DSM Remote Interface. The Headhunter and the Active Registry employ Remoting

to communicate with this remote object. The communication can be carried out

using either the HTTP or the TCP channels. The DSM remote server encapsulates

the functionality of authentication and authorization. It also assigns the multicast

group address to the HH and the ARs which register with it based on the domain in

which they register.

2. Headhunter multicasts its encrypted location [SIR01] to the group address assigned

to it and the Active registry, registered in the same domain as the Headhunter,

listens at the group address. This communication has been implemented using the

User Datagram Protocol (UDP) instead of using TCP or HTTP. The HH group

multicasts at a periodic interval which can be as small as a few milliseconds and

since the messages being sent from the HH to the AR are small enough to be

encapsulated in a single datagram, UDP was chosen to be the underlying protocol.

 92

3. After the AR receives the multicast message from the HH, the AR decrypts the

message using the secret key (supplied by the DSM which controls all the security

related issues of the URDS). It then contacts the HH using the location retrieved

and unicasts its own encrypted location to the HH using TCP.

4. Once the HH receives the AR contact information, it then uses Remoting to

establish the reference for further communication. The HH now periodically queries

the AR for all the component information registered with it.

5. The UMM specifications retrieved by the HH from all the ARs it communicates

with, are now stored in the local MR of the HH.

Further details on the above outlined implementation can be found in [FRE02].

The learning experience gained during this adaptation process is described below as one

of the two main issues that were encountered during the .NET-specific adaptation of the

URDS.

5.3 Issues in .NET Specific Adaptation

The implementation of the URDS architecture using the .NET Remoting

Component model, revealed certain technological issues, which needed to be addressed

in order to incorporate .NET component model within UniFrame. The following sections

describe these issues.

5.3.1 Registration Mechanism

One of the critical issues faced during the development of the .NET URDS was

the implementation of the Active Registry, because the .NET Remoting framework does

not contain the notion of a registration mechanism that is analogous to the RMI registry

mechanism. This observation was confirmed in [ING02]. It states that:

 93

“. . . unfortunately, there is no naming or registration service for .NET Remoting yet.

therefore the URLs always have to be transferred "out of bound" (i.e. by means of email,

copy-and-paste, or by developing your own naming service based on active directory for

example). The client will therefore always need to know the complete URL to the server-

side object.”

 The Remoting framework supports the notion of a registration class with which a

.NET component registers its unique identifier using its APIs. This class is called the

RemotingConfiguration Class. However, this registration mechanism is confined to the

“Application Domain” of the application in which the component is hosted. The concept

of Application Domain within the .NET Remoting context is briefly explained below

[MIC01a].

Cross Application Communication - Application Domain: Typically, process

boundaries are used to isolate applications running on the same computer. Each

application is loaded into a separate process, which isolates the application from other

applications running on the same computer. The applications are isolated because the

memory addresses are process-relative; a memory pointer passed from one process to

another cannot be used in any meaningful in the target process. In addition, direct calls

between two processes are not allowed and require proxies for a level of indirection.

Managed code must be passed through a verification process before it can be run

(unless the administrator has granted permission to skip the verification). The verification

process determines whether the code can attempt to access invalid memory addresses or

perform some other action that could cause the process in which it is running to fail to

operate properly. Code that passes the verification test is said to be type-safe. The ability

to verify code as type-safe enables the CLR to provide a level of isolation as the process

boundary, at a much lower level of performance cost.

 94

Application domains provide a more secure and versatile unit of processing that

the CLR can use to provide isolation between applications. Several application domains

can run in a single process with the same level of isolation that would exist in separate

processes but without incurring the additional overhead of making cross-process calls or

switching between processes. The ability to run multiple applications within a single

process dramatically increases the server scalability.

The isolation provided by application domains has the following benefits:

� Faults in one application cannot affect other applications. Because, type-safe code

cannot cause memory faults, using application domains ensures that code running

in one domain cannot affect other applications in the same process.

� Permissions granted to code can be controlled by the application domain in which

the code is running.

� Individual applications can be stopped without stopping the entire process.

Application domains enable to unload the code running in a single application.

� Code running in one application cannot directly access the code or resources from

another application. The CLR enforces the isolation by preventing direct calls

between objects in different application domains. Objects that pass between

domains are either copied or accessed by proxy. If the object is copied, the call to

the object is local. That is, both the caller and the object being referenced are in

the same application domain. If the object is accessed through a proxy, the call to

the object is remote. In this case, the caller and the object being referenced are in

different application domains. Cross-domain calls use the same remote call

infrastructure as calls between two processes or between two machines. As such,

the metadata for the object being referenced must be available to both the

application domains to allow the method to be JIT-compiled properly. If the

calling domain does not have the access to the metadata for the object being

called, the compilation of the code fails. The mechanism for determining how

objects can be accessed across domains is determined by the object.

� The behavior of code is scoped by the application in which it runs. In other words,

the application domain provides configuration settings such as application version

 95

policies, the location of any remote assemblies it accesses, and information about

where to locate assemblies that are loaded into the domain.

Runtime Hosts - .NET: The CLR supports different kinds of applications such as

Web server and Windows applications. Each type of application requires a runtime host

to start it. The runtime host loads the CLR into a process, creates the application domains

within the process, and loads user code into the application domains. The .NET

Framework contains the different kinds of runtime hosts such as ASP.NET, Microsoft

Internet Explorer and Shell Executables. Every .NET application requires a runtime host

to execute.

Role played by Application Domains and Runtime hosts in the design of .NET AR:

As has been stated earlier, UniFrame proposes that the AR registration mechanism for a

component should be native to the component model and projects it as one of the

characteristic feature of the UniFrame registration mechanism. The Java RMI-based

URDS successfully provides this characteristic in its implementation [MYS04].

However, the role that the application domains and runtime hosts play in the design of the

.NET AR, is significant in determining the adaptation of this characteristic in the context

of .NET.

During the entire process, starting from a remote client getting a reference to the

remote server to the client and the server establishing a communication for achieving the

functionality of the application, the following three steps can be identified:

1. Register a server instance

2. Obtain Reference or Handle to remote server

3. Invoke functionality of the remote server

The process has been outlined for the Java RMI model in Figure 5.3 and is explained by

the following paragraphs.

 96

Java RMI Model’s Remote Server Hosting Mechanism: Figure 5.3 shows the RMI

registration mechanism native to the component model of Java RMI. The RMI remote

objects register with a running instance of the RMI Registry at a well known location

using the API of the RMI registry – Naming.rebind (URI). The object supplies its Unique

Figure 5.3 Registration mechanism in Java RMI component model

Resource Identifier (URI) in the process. The RMI registry stores a reference to these

remote objects. A client can obtain a reference to these remote objects again using the

API of the RMI registry – Naming.lookup(URI). The client supplies the URI of the

remote object to obtain the reference.

Active Registry Adaptation in Java RMI Model: Figure 5.4 shows the registration

mechanism of the URDS architecture adapted for the Java RMI model. It shows that the

Java RMI Active Registry could enable the centralized registration mechanism for Java

RMI components by wrapping the native RMI registry in a way such that now the remote

object calls the AR.rebind(<URI>) with the same set of parameters as in the native

mechanism. Since the AR wraps the RMI registry, the clients can still be able to call the

Naming.lookup(<URI>) in order to get a reference to the remote objects. Hence, for the

 97

RMI components, the AR was able to provide a registration mechanism which emulates

the RMI’s inherent registration mechanism.

Figure 5.4 Active Registry-enabled registration mechanism in Java RMI

.NET Remoting Model’s Remote Server Hosting Mechanism: The sequence of

events which take place in order for a remote server to communicate with a client in case

of the .NET Remoting paradigm has been depicted in Figure 5.5. The following are the

observations from that figure:

1. Step 1, namely the process of registration, is missing in figure because of the lack

of support in the .NET Remoting paradigm. The server utilizes the API of the

RemotingConfiguration class in order to register the instances of remote objects

with it and for the clients to get the reference to these registered remote objects.

However, the scope of this class is bounded by the Application Domain in which

the remote object is being hosted and the Remoting Configuration class of the

framework does not exist as a registry (like the RMI registry). Its resources are

 98

limited to the application domain of the application in which it is hosted. Hence,

this class serves to only host a remote object. Under the UniFrame paradigm,

every component is an independent entity and has its own set of resources and

Figure 5.5 Registration mechanism in .NET Remoting model

dependencies. Thus, every time a .NET component is developed the runtime host

for the application will load the CLR into a different process which will have its

own application domain (as mentioned earlier). Hence, each independently

developed component will have its own application domain and cannot be hosted

in other application domain using the RemotingConfiguration, unless and until

these is a customized registration mechanism to do so. The approach adopted as

part of the study accomplishes this (to be discussed later).

 99

2. The client knowing the URI (which will be the URL here) of the remote

component (by means such as copy/paste or other explicit mechanisms) gets a

reference to the remote object by contacting each remote object individually

(since there is no single registry).

3. Client can now invoke the functionality of these remote servers.

Active Registry adaptation of the .NET Remoting registration mechanism (Figure

5.6): The above discussion indicates that for .NET Remoting there exists a need for some

kind of central registration mechanism where components belonging to a particular

category (or domain) can be registered and enable clients to discover them. In the context

of the UniFrame paradigm, the solution was provided by the design and development of a

.NET Active Registry. Hence, the Figure 5.5 was adapted to Figure 5.6 by the

introduction of the .NET AR. It was created as a Windows Forms stand-alone .NET

application that provides the features of an AR such as activeness and introspection

capabilities. The registry is based on the principles of .NET Remoting and provides a

registration mechanism for services to register and clients to query. This also places the

missing link 1 where the components register with the .NET AR upon their startup using

its API – AR.RegisterService(). The clients then knowing the URIs of the remote objects

(by means of the discovery process of the URDS) can obtain a reference to these remote

objects and finally in step 3, invoke their functionality.

The most notable aspect of the above adaptation is changing the mechanism for

components to register their instances on the network. In the case of Java-RMI AR,

though the name of the API now used by the component changed, the parameters

supplied during the registration did not change (type and the URI). This is because the

Java RMI AR is acting as a wrapper around the native registry of the RMI component

model and continued to utilize its registration functionality. However, in the case of the

.NET AR, since the AR needed to provide a registration mechanism from scratch, the

information required by the AR from the component is more than just the type and the

URI of the component. The .NET AR can be created in any of the application types or

 100

runtime hosts. However, in each case, the CLR creates a separate application domain for

its execution. In order for the AR to host the components within the same application

domain, the .NET framework necessitated the AR to have access to the compiled

assemblies of the components. The .NET AR then introspects the components to obtain

their UniFrame specifications and return to the HH when queried for.

Figure 5.6 Active Registry adaptation in .NET Remoting model

The .NET Remoting allows for different modes in which components can be

hosted, for example, the clients can be Client-Activated objects (CAO) or Server-

Activated objects (SAO). The .NET AR is flexible and allows the component developer

 101

to specify different parameters for hosting the components – such as the type of the

channel (TCP/HTTP), object type (CAO/SAO) and port numbers.

5.3.2 Interoperability Issue

One of the other facets of the URDS architecture which was investigated in the

context of .NET component model is the interoperability of discovery services adapted to

distinct component models. Currently, these adaptations span across the Java RMI and

.NET Remoting models. An experimentation has been carried out to compose a

distributed system with the .NET and RMI instances of URDS running/available on the

network which in turn facilitates an increased search space. While the following

paragraphs focus on the interoperability issue experienced during the experimentation,

Chapter 6 provides further details on it.

The systems involved in the integration can be broadly categorized into 3

categories – System Integrator, .NET URDS and the Java RMI URDS. The integration

requires the flow of the query for components and the search results satisfying the query.

The major challenge that is imposed during the experimentation is the propagation of this

data across different component models. The following paragraphs provides the details of

the issue.

As indicated in Section 2.1, the search process is initiated when a system

integrator presents a query to the UniFrame. The general form of the query is a request to

create a system that satisfies certain QoS parameters. For example, consider the following

query expressed in a natural language like format:

“Create an Account Management System that has availability >50% and end-to-end

delay < 500ms”.

The name of the system is important in identifying the application domain of the system

and the QoS parameters help identify desired properties of the system. The query is

processed using the domain knowledge-bases that contains the key concepts from the

 102

domain, a system architecture and the UMM descriptions of the components. From this

query, a set of search parameters is generated which guides the component search

process. The search parameters can be specified as the required UMM specifications of

the components that should meet the criteria. Also, the specifications of the components

that meet the search criteria can also be specified as the parameters of the UMM

specifications template. Figure 5.7 shows a sample UMM specification template for a

component “Cashier Validation Server” which forms a part of the Banking domain.

Various aspects of the service can be specified as a part of the UMM-specifications.

Nodes can be single-valued or multi-valued in which case they hold multiple child nodes.

For example, the node, Domain name – Banking – is single-valued whereas the node -

Auxiliary Attributes - is multi-valued since the auxiliary attributes of the component

could be made up of various attributes such as security, mobility, etc. [HUA01]

<UMM_ConcreteComponent>

 <ComponentName> CashierValidationServer </ComponentName>
 <ComponentSubcase> CashierValidationServerCase2 </ComponentSubcase>
 <DomainName> Banking </DomainName>
 <SystemName> Bank </SystemName>
 <Description> Provide cashier validation service in banking. </Description>
 <ComputationalAttributes>
 <InherentAttributes>
 <id> http://134.68.140.197:9000/CashierValidationServer</id>

 <Version> 1.0 </Version>
 <Author> Natasha Gupta</Author>

 <Date> August 2002 </Date>
 <Validity> Yes </Validity>
 <Atomicity> Yes </Atomicity>
 <Registration> http://134.68.140.143:8500/HeadHunter </Registration>
 <Model> .NET </Model>
 </InherentAttributes>

 <FunctionalAttributes>
 <Purpose> Act as validation server for cashiers in banking. </Purpose>
 <Algorithms> <algorithm> JFC </algorithm>

 </Algorithms>
 <Complexity> O(1) </Complexity>

 <SyntacticContract>
 <ProvidedInterfaces>
 <Interface> IValidationCase2 </Interface>
 </ProvidedInterfaces>…………………..
 …………… <//PostprocessingCollaborators>
 </CooperationAttributes>

 <AuxiliaryAttributes>
 <Mobility> No </Mobility>

<Security> L1 </Security>
 <FaultTolerance> L1 </FaultTolerance>
 </AuxiliaryAttributes>
 <QoS>
 <QoSMetrics>

 <Metric>

Figure 5.7 Abstract Component model [HUA01]

 103

 <ParameterName> throughput </ParameterName>
 <FunctionName> validate </FunctionName> <Value> 9128.26 </Value>
 </Metric>
 <Metric>
 <ParameterName> endToEndDelay </ParameterName>
 <FunctionName> validate </FunctionName>
 <Value> 109.55 </Value>
 </Metric>
 </QoSMetrics>
 <QoSLevel> L1 </QoSLevel>
 <Cost> L1 </Cost>
 <QualityLevel> L1 </QualityLevel>
 </QoS>

</UMM_ConcreteComponent>
Figure 5.7 Continued

The example shown in the figure could be the UMM specifications of a

component discovered based on the component query that was decomposed out of the

system’s query specified above. The component’s query is also specified as parameters of

the UMM specification template. For example, the component query could be composed

of the following parameters:

Domain Name like “Banking”

Throughput >= 9000 ms

End To end Delay < 200ms

Availability > 50%

Based on the above search criteria, the component with the above UMM specifications

matches the search criteria and hence, would qualify as one of the discovered

components.

During the process of adaptation of the URDS to a specific component model, the

UMM specifications – of the query and the description of the components discovered –

were mapped to equivalent types, namely Query Component and the Concrete

Component. Both the types are based on Abstract Component which defines the basic

UMM specification template for a particular component and is stored in the

knowledgebase. The Query Component defines the queried UMM specifications of a

component and all the instances of the Concrete Component type entail the UMM

specifications that actually matched the Query Component constraints for that component

 104

type. Each of the types, whether Query Component or the Concrete Component, support

a set of methods which enable the retrieval of data encapsulated inside the object.

Achieving interoperation between the two URDS instances required the

propagation of these objects, namely query component and concrete components (for all

the matching components), across the discovery services and between the system

integrator. Since, the information to be handled could be large in terms of the number of

components that satisfy the requirements of a single query, bridges were chosen to be the

preferred interoperability mechanism due to the advantage they provide in terms of

performance by allowing the serialization of data on wire to be in the binary format. A

comparison of the different interoperability mechanisms was provided in Chapter 3. The

above scenario was experimented with the use of the Ja.NET and iHUB bridges which

were discussed in Chapter 2 as part of the related work. The experimentation reveals the

following findings:

1. It is found in both the cases, Ja.NET and iHUB, that the bridges are limited in

their capability to serialize objects across different component models. While an

object’s attributes could be successfully mapped into a serializable format

(binary) and passed across the Java RMI and .NET, the interface of the object

could not be mapped/serialized and then reconstructed on the other end of the

bridge, i.e. in the context of the other component model. The experiment proved

to be a test-bed for the Stryon Inc. [STR04] and led to a series of interactions with

their technical team who acknowledged the limitation mentioned above and

initiated certain steps to overcome it. The iHUB bridge was also found to be

limited in its functionality to passing objects such as Arrays, ArrayLists and

Hashtables, etc., which were the form of mapping of the multi-node attributes of

the UniFrame specifications, shown in Figure 5.7.

2. One of the other findings gained out of the experiment was that the use of bridges

in connecting heterogeneous components cannot be done in a completely

seamless manner, i.e., requiring no code changes in the component. Some sort of

customized code changes for each of the bridges were needed and re-compilation

 105

was required to incorporate those changes within the components. This further

implies that if the interoperation mechanism between any two components was to

change, it would also imply change in the code of the component again. Based on

the discussion of connectors in Chapter 3, the knowledge further provided a

motivation to the use of connectors to mediate the interaction of heterogeneous

components. The discussion was explained in detail as the problem of

“Deployment Anomaly” in Section 3.4.1.

Solution Adopted: In order to address the issue of limited functionality of the

bridges in serializing the interfaces of the objects across component models, the object in

one component model was first converted to an intermediate format and this format was

used during the marshaling/unmarshaling process. The intermediate format also uses the

binary protocol of communication but encapsulates only the data values of the variables.

The format is hence devoid of any interfaces and captures the state of the object being

serialized. The result is an overhead involved in performing the translation of each of

such objects transmitted across heterogeneous platforms.

The result of this finding was an attempt towards incorporating the use of

connectors and further exploring the concept in the context of UniFrame further – for

example the issue of automating the generation of the connector or glue/wrapper code in

the context of UniFrame. The work done by [BUL00] is a possible approach and has been

discussed further in reference to linking URDS instances in Chapter 6. The finding also

indicates that any component which provides a possibility to connect to other components

and participate in a collaboration with other components to form a distributed application,

should provide a certain kind of interface which can be used to link the component to

other components, homogeneous or heterogeneous, by means of a glue-wrapper code.

There are a number of research initiatives in this direction and these are not discussed in

this thesis. For the experimentation purpose, the interoperation was achieved by means of

a distributed connector which was manually generated. The connector is depicted in

Figure 5.8. The connector frame (namely the Provided and the Required roles, C1`Role

 106

and C2`Role respectively), is tuned to the interface of the components to be connected

(manually as of now and can be an identified metric requiring automation). Hence the C2

instead of invoking the interface of component C1, C1Role, now invokes the same

interface of the connector, C1`Role.

Figure 5.8 Connector mediation between .NET and Java RMI interoperation

The connector [BUL00] architecture is made up of the following primitive

elements: adapter, stub and the skeleton, which provide the minimum functionality for

the interconnection. There is no attempt on incorporating the QoS, interception or other

such advanced features. The adapter performed the task of adapting the serialized objects

into a format compatible with the interoperating mechanism incorporated within the other

primitive elements of the connector. In this case, the primitive elements namely the stub

and skeleton, incorporated the bridge, Ja.NET, and hence the adapter performed the task

of translating the objects into a compatible format for the bridge as discussed earlier.

Having addressed the challenges in the .NET-adaptation of the URDS, it is

necessary to validate the functionality of the solutions adopted. The thesis uses an

empirical approach to validate by performing a set of experiments that are described in

the next section.

 107

5.4 Experimental Validation of .NET URDS

This section outlines the experimental validation of the .NET-based URDS

undertaken for the purpose of the study. The experiments provided a means of testing the

functionality of the adaptation achieved and are divided into the following two main

categories:

a) Comparison-based experiments: Since the adaptation of a specific architecture,

URDS, into a different component model has its own set of associated idiosyncrasies,

the thesis adopts an approach of a comparative analysis between the Java-RMI and

.NET-based adaptations. The analysis consisted of varying the number of one

particular entity of URDS (such as HHs) and its effect was studied on the behavior of

the URDS in terms of retrieving results for a given query. The behavior was studied

for both the component models and their trends were compared. This gives an insight

into the functionality of the URDS for the same variation but different component

models.

b) Experiments for performing check on the system’s scalability: After performing a

comparison between the two component models based URDSs, the size of the .NET

URDS system was increased to confirm its functionality on a larger scale.

Experimental Set-up: The experimental consisted of desktop Personal Computers

with Windows 2000 operating system on a local area network. Each of the machines had

the Microsoft .NET 2003 installed and hence, all the entities of the URDS and the

components belonged to the .NET component model and were built using the same

version of .NET.

Experimental Parameters: Since the entry point to the URDS system is the client

who submits a query for the search of components meeting that query, the Client’s Query

Results Retrieval Time (CQRRT) has been taken as the parameter of functionality

measure in each of the experiments. In addition, there are other variables associated with

each of the experiments. These are:

 108

NH = Number of Headhunters

NAR = Number of Active Registries

NQM = Number of Query Managers

NC = Number of Components matching the search criteria

NQC = Number of the Querying Clients

NDSM = Number of Domain Security Manager

Experimental Use-Case: The basic process that is inherent to every experiment is

as follows:

1. The DSM is the first entity which is started and marks the beginning of building

up of a URDS instance.

2. A certain number of Headhunters, Active Registries and components are deployed

for the setup as required by the experiment. Every principal (HH and AR) of the

URDS authenticate themselves with the DSM on startup.

3. A client submits a query to the QM.

4. The QM gets a list of available HHs from the DSM for the domain for which the

query is targeted for. The QM then picks up a random HH, known as the Primary

Headhunter (PH) and passes the query to the PH with the list of the other HHs in

the list.

5. Every HH now employs a search algorithm [MYS04] to propagate the query

further – the PH then combines the results obtained from each of the HHs with the

results obtained from its own MR.

6. The results are returned back to the QM which returns the results to the Query

Client.

7. The CQRRT is calculated from the instant the query is submitted to the QM to the

time when the client receives the matching results (UMM specifications of the

components matching the query) back. Depending on the experiment being

performed, the number of entities in the system can vary and each time the

CQRRT is measured to observe the effect.

 109

Section 5.4.1 illustrates the first category of experiments, namely the comparison-

based experiments and Section 5.4.2 outlines the ones related to scalability.

5.4.1 Comparison-Based Experiments

For the comparison-based experiments, there were a set of three experiments that

have been identified in terms of the entities whose variation could be utilized in studying

the behavior of the URDS system. These entities are the number of components (NC),

number of HHs (NHH), and the number of Active Registries (NAR). The following

sections indicate these experiments in the order. The variation of number of queries and

QMs has been studied as part of Section 5.4.2.

5.4.1.1 Experiment 1: Varying the Number of Components, NC.

Figure 5.9 shows the trend that the CQRRT follows with an increase in the number of

components that the URDS collects matching the criteria specified in the query. The rest

of the parameters such as NH, NAR, NDSM, NQM, and the NQC were kept constant and only

the NC was varied from a range of 1 to 24. The values of these parameters can be found in

Figure 5.9. Figure 5.9 (a) depicts the trend that was observed in the case of a .NET URDS

and Figure 5.9 (b) shows the observation for the Java RMI URDS. Each of the figures is

accompanied by the number of other entities that existed in the system for the

experiment. As can be seen, there is a linear variation in the CQRRT with an increase in

the number of components – in both the cases. However, the .NET URDS shows a higher

slope (600.32) than the corresponding experimental result of 113.7. There could be

multiple reasons for this difference. The .NET HHs were all running on a different

Windows machine with a completely isolated file system. However, the Java RMI HHs

all shared the same file system on a UNIX-based server. This factor can add to the

increase in the time it takes for the .NET PH to collect results from all the other HHs.

One of the other possible reasons which could play a major role in the difference in the

values is the amount of time it takes for the HHs to retrieve the component’s UMM

 110

.NET URDS performance: NDSM = 1 NH = 1; NQM = 1; NAR : NC = 1:4; NC = variable

Client Query Retreival Time Vs. Number of Components

y = 600.32x

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 5 10 15 20 25 30
Number of Components

Q
ue

ry
 R

et
re

iv
al

 T
im

e
(m

s)

Figure 5.9 (a) Variation of CQRRT V Number of Components, .NET URDS

Java RMI URDS performance: : NDSM = 1 NH = 1; NQM = 1; NAR : NC = 1:4; NC = variable

Increase in Component vs CQRRT

y = 28.425x + 275.51

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25

No of Components

T
im

e
in

 m
ill

is
ec

Figure 5.9 (b) Variation of CQRRT V Number of Components, Java RMI URDS

[MYS04]

Figure 5.9 Increase in the Number of Components matching the criteria of the
query V CQRRT

 111

specifications from its own meta-repository. In case of the Java RMI URDS, the MR is

implemented as a database using the Oracle version 8.0 database server. Whereas in the

case of the .NET URDS, the MR is in the form of a MS Access database. Oracle server is

associated with its own set of optimization techniques for the query execution. Whereas

such an optimization is missing in the case of MS Access database which just serves as

repository of information. Hence, as the number of components increases, it takes more

time for a .NET HH to retrieve the information than a Java RMI HH.

Therefore, it can be concluded that the .NET URDS behaves in a similar manner

as the Java RMI URDS, according to the trend followed by the graph, but there is a

difference in the actual values for the time it takes for the client to retrieve results for its

query. The difference is the outcome of the heterogeneous component models and

associated environments to which the URDS has been adapted to.

5.4.1.2 Experiment 2: Varying the Number of Active Registries

A HH in the URDS periodically communicates with known ARs from its own

domain. With every communication the HH updates its meta-repository with the set of

results obtained from the AR. The process is periodic and hence, assures that the data

store of every HH is up to date with latest information of the components registered with

the ARs. Within the HH, the process of updating the meta-repository runs in the

background. When the HH receives a query, the HH queries its meta-repository to search

the matching components and returns it as a set of Concrete Components back. This

process is independent of the number of ARs that might have contributed to the result set.

Hence, an increase in the number of ARs does not affect the CQRRT may be except a

few variations due to the processor usage. This trend is depicted in the graphs shown in

the Figure 5.10. Figure 5.10 (a) shows that for the .NET URDS, the CQRRT remains

almost constant with the increase in the number of ARs. In case of the Java RMI URDS,

Figure 5.10 (b), the increase is negligible and hence follows a similar trend. More details

about the Figure 5.10 (b) can be found in [MYS04].

 112

Figure 5.10 Increase in Number of Active Registries V CQRRT

.NET URDS performance: NDSM = 1; NC = 1; NH = 1; NQM = 1; NQC = 1;
Client Query Retreival Time (ms) Vs Number of Active Registries

0

100

200

300

400

500

600

700

800

900

1000

0 1 2 3 4 5 6 7 8

Number of Active Registries

C
lie

nt
 Q

ue
ry

 R
et

re
iv

al
 T

im
e

(m
s)

Figure 5.10 (a): Variation of CQRRT Vs Number of Active Registries, .NET URDS

Java RMI URDS performance: NDSM =1; NH = 1; NQM =1 ; NAR = variable; NC =1

CQRRT vs No of Active Registries

0

2000

4000

6000

8000

10000

1 2 3 4 5 6 7

No of Active Registries

T
im

e
in

 m
ill

is
ec

Figure 5.10 (b): Variation of CQRRT Vs Number of Active Registries, Java RMI URDS

[MYS04]

 113

5.4.1.3 Experiment 3: Varying the Number of Headhunters

The experiment studies the behavior of the .NET-adapted URDS system with the

increase in the number of the headhunters while keeping other parameters, NC, NQM, NAR,

and NDSM as a constant factor. Specific values for these parameters have been outlined in

Figure 5.11 (a). It can been seen from the figure that the graph has an increasing

characteristic trend implying that as the number of headhunters spanning the search space

increase, the longer it takes for the results to be retrieved by the client, i.e. the CQRRT

also increases. The trend can be verified against a similar experiment that was done in the

context of the Java RMI model with the same parameters. The graph has been depicted in

Figure 5.11 (b). Both the graphs show a similar trend followed by the two systems for the

variation in the number of headhunters. The trend can be attributed to the underlying

propagation protocol that has been adopted for the query propagation. The protocol

implements a simple query routing technique that is based on the random propagation of

queries. The protocol will be briefly stated here and more details can be found in

[MYS04]. When the QM submits the query to one of the headhunters as the PH, it

chooses a particular “branching factor”, b, to decide the number of HHs comprising its

child nodes for the protocol. Every HH at the root of the tree implements the same value

for b. The aim is to limit the depth of the propagation tree which by choosing the value of

b. Every HH, receives a list of, say, k headhunters. The HH calculates k % b (k modulo

b) = s = number of HHs that form the immediate children of this HH. Remaining HHs, r

= k – s, are the HHs to be allocated by this HH. Now the HH calculates the number of

other headhunters to be passed to each headhunter in the subset s. This number is p = r/s.

Hence, for every headhunter in the next level, k = p. The same procedure is applied by

every HH at its own level with its own set of HHs k. therefore, as the number of HHs in a

given system increases, k increases at every level (keeping the b constant) and hence the

depth of the tree also increase. This results in an increase in the CQRRT. The trend is

confirmed by the .NET and Java RMI based URDSs. For a fixed value of k (for the PH),

as the value of b increases, s increases (k % b = s) and hence r decreases. This implies a

decrease in the depth of the search tree which implies a decrease in the CQRRT. This can

imply a smaller slope for the trend line in graphs of Figure 5.11.

 114

.NET URDS performance: NDSM = 1; NC = 1; NHH = variable; NQM = 1; NQMC = 1;

Number of Headhunters Vs Client Query Retreival Time

0

5000

10000

15000

20000

25000

30000

0 5 10 15 20 25 30 35

Number of Headhunters

C
lie

nt
 Q

ue
ry

 R
et

re
iv

al
 T

im
e

(m
s)

Figure 5.11 (a) Variation of CQRRT Vs Number of Headhunters, .NET URDS

Java RMI URDS performance: NDSM = 1; NC = 1; NHH = variable; NQM = 1; NQMC =1

CQRRT vs No of Headhunters

0

1000

2000

3000

4000

5000

6000

7000

8000

1 5 9 13 17 21 25 29

No of Headhunters

T
im

e
in

 m
ill

is
ec

Figure 5.11 (b) Variation of CQRRT Vs Number of Headhunters, Java RMI URDS [MYS04]

Figure 5.11 Increase in Number of Headhunters V CQRRT

 115

5.4.2 Scalability-Based Experiments to Check the System Functionality

5.4.2.1 Experiment 4: Varying the Number of Queries in the System

One of the experiments performed for assessing the .NET-specific URDS

system’s functionality at a bigger scale was in terms on studying the CQRRT variation

with the number of the queries that exist in the URDS system during the same period of

time. For this, the experimental setup consisted of a fixed number of HHs, ARs and

DSM. There were also 2 QMs that were deployed to handle the incoming queries to the

system. There are a number of query clients running and each client injects a query into

the system through one of the QMs. Each client then calculates the time it takes for the it

to obtain the results for its query. For a known value of the number of queries into the

system ni (i=10, 20, 30, ….), a certain number of clients were run kj (j=1, 2, 3, 4…) and

the average response time for each value of i was calculated. As the number of queries

increase, increasing i, the trend was observed and plotted in Figure 5.12. It can be

observed that as a number of queries within the system increases, the CQRRT also

increase with nearly a second order trend line. A similar experiment was also performed

in Java RMI with NQM=1 and rest of the parameters remaining the same. The Java RMI

experimentation also shows an increase in the CQRRT as the number of query clients

accessing the system increase. The results of the Java RMI-URDS experiment are shown

in Figure 5.13. The difference in the trends could be attributed to many factors.

Difference in the component models, difference in the number of entry points of the

queries to the system and environment in which the experiments were conducted are

some of the factors.

5.4.2.2 Experiment 5: Adaptability of the System at a Larger Scale

After studying the effects of varying the number of different parameters, an

experiment was conducted in order to take a snapshot of the .NET URDS depicting it’s

adaptability to a large number of entities.

 116

.NET URDS performance: NDSM = 1; NC = 1; NH = 1; NQM = 2; NQC = variable; NAR=1
Average Client Query Retreival Time Vs Number of Queries

0

5000

10000

15000

20000

25000

30000

35000

0 20 40 60 80 100 120 140 160 180 200

Number of Queries to the system

A
ve

ra
ge

 C
lie

nt
 Q

ue
ry

 R
et

re
iv

al
 ti

m
e

(m
s)

Figure 5.12 Increase in Number of Queries V CQRRT

Java RMI URDS Performance: NDSM = 1; NC = 1; NH = 1; NQM = 2; NQC = variable; NAR =1;

C QR R T vs Query Increase

y = 150.67x + 2537.9

0

5000

10000

15000

20000

25000

30000

35000

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

No of Queries

Ti
m

e
in

 m
ill

is
ec

Figure 5.13 Variation of the Number of Queries, Java RMI URDS

 117

When the QM is configured as a TCP server, it accepts .NET Remoting requests

over TCP/IP. For the experimentation, the configuration settings for each QM were taken

as the default provided by the .NET Remoting framework for each TCP port opened by

the server. The number of clients and QM in the large-scale experimentation were chosen

after trial and error experimentation with a larger number of clients and fewer QM.

However, with the default configurations for the TCP server (QM in this case), the error -

“request queue full” was thrown. This happens when number of incoming requests

exceeds the size of the request queue, used to buffer accepted requests which have not yet

been serviced. A larger initial request queue size may improve the server's ability to

buffer large numbers of simultaneous connection requests, at the cost of additional

memory use though. However, since the focus of the experiment conducted was to test

the scalability of the URDS model without any modifications to the default configuration

of the underlying object model, here .NET Remoting, the experimentation was performed

with the default queue size, thread pool size etc. The parameters are as specified with the

graph in Figure 5.14 and were chosen after a trial and error approach and arriving at the

numbers in which the experiment successfully completed in about two and a half days.

The following graph only shows the behavior of the four of the total nineteen clients (in

terms of the CQRRT) which contacted the same QM for the retrieval of the results. It can

be observed from the graph that the average response time of the clients vary in the range

of 756.500s (12.75 minutes) to 906.5 ms (15.10minutes).

The scalability of the QM, as a TCP server, under the .NET Remoting paradigm

can be further extended by setting up the following parameters of the TCP Server

[BRI04]

TCP Backlog: TCP backlog (connection queue length) used by the server socket.

Larger values may improve the system's ability to accept multiple simultaneous socket

connection requests. If zero, the system default backlog is used.

 118

Thread Pool – Minimum Size: Minimum number of threads in the thread pool.
This is the number of threads started by the thread pool manager when a TCP server is
started. The thread pool will never shrink below this size, regardless of thread use.

NC=100; NHH=30; NQM=3; NQC=19; NDSM=1; NAR=5-6; NAR:NC= 1:4/1:8/1:15; NQM:NQC=
1:8/1:7/1:4

Snapshot of the .NET-based URDS

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Client Queries

A
ve

ra
ge

 C
lie

nt
 Q

ue
ry

 R
et

ri
ev

el
 T

im
e

(m
s)

QM2 Client1
QM2 Client2
QM2 Client3
QM2 Client4

Figure 5.14 Scaled .NET URDS behavior (for only four clients)

Thread Pool – Maximum Size: Maximum number of threads in the thread pool.

The thread pool will not grow beyond this size, regardless of thread use.

Thread Pool – Minimum Available: Minimum number of available threads before

additional threads are started. If the current number of threads in the thread pool is less

than the Maximum size, the thread pool will attempt to add more threads ("grow" the

thread pool) to keep up with incoming requests. Typically set to 1.

 119

Request Queue – Initial Size: Initial size of the request queue. The request queue

is used to buffer accepted requests which have not yet been serviced. A larger initial

request queue size may improve the server's ability to buffer large numbers of

simultaneous connection requests, at the cost of additional memory use.

Request Queue – Maximum Size: Maximum size of the request queue. This

parameter restricts the number of requests that can be buffered. Once the size of the

request queue reaches this value, additional connection requests will be rejected. If zero,

the queue grows as needed.

The study of the URDS architecture extended to the .NET component model

revealed certain issues that need to be considered when incorporating heterogeneous

component models within the context of UniFrame. Each of the features in this chapter is

analyzed towards encompassing of the .NET component model into UniFrame. The

chapter provides the guidelines for this, particularly into the registration and discovery

mechanism of UniFrame’s approach. The chapter addresses the issues for this

incorporation and also provides an architecture for the Active Registry to tackle these

issues. The architecture is validated for performance with two component models and

hence provides an assessment platform for the adaptability of the URDS architecture.

However, the issue of Heterogeneity and Interoperability, a major challenge for

UniFrame, exists and needs to be discussed within the context of the .NET component

model. Having discussed the .NET URDS architecture in this chapter, the next chapter

addresses the issue of interoperability with respect to linking heterogeneous discovery

services.

 120

6 LINKING UNIFRAME RESOURCE DISCOVERY SERVICES

The third objective of the thesis has been undertaken in this chapter, namely to

address the issue of heterogeneity within UniFrame. One of the studies outlined in

Chapter 1 for the study of UniFrame in the context of .NET was to experiment and

analyze the adaptation of the URDS with the perspective from the .NET component

model. Chapter 5 provided for such as analysis with the architecture of the .NET

discovery service and the issues faced during the process. The chapter also outlined a

performance analysis that was carried out between the performances of the adaptation of

the URDS into two different component models. The analysis consisted of studying the

variation of different parameters of the discovery service and measuring them against the

time period that elapses between the invocation of a query submission interface and

retrieval of the results for the same. The study leads to another question – If there could

be multiple instances of the discovery services on the network, can they be integrated in

order to provide for a more scalable and comprehensive solution? What are the issues that

need to be considered in such a scenario? How can the heterogeneity that exists between

different discovery services be resolved? All these questions are discussed in this chapter.

Figure 6.1 [SIR01] depicts a hierarchical nature of the URDS architecture in order

to achieve federation between UniFrame discovery services. This allows the expansion of

the search space of the URDS and consists of the ICBs of different URDSs linked

together to form a federation. The Link Manager (depicted as LM in the figure) performs

the function of linking the ICBs. [SIR01] also discusses some of the basic algorithms that

a LM should provide in order to achieve its functionality. However, it does not provide

 121

the LM architecture in detail. This chapter focuses on the LM with an underlying aim to

also analyze the issue of handling heterogeneity – placed within the context of discovery

Figure 6.1 Federated hierarchical organization of ICBs [SIR01]

service, the suggested approach of the connectors discussed earlier, and .NET component

model with the other existing URDS adaptation in Java RMI. However, federation

requires more than just a LM in order to facilitate an efficient and extensible

interconnection. The next section discusses such an architecture.

6.1 Proposed Architecture for Linking URDSs – Discovery Manager

Each URDS contains one LM dedicated for creating a federation of discovery

services. If there are multiple instances of the URDS, there exists a need for a well-

defined architecture that would govern the propagation of the query within these

instances and the collection of the results from them. The proposed architecture is shown

in the Figure 6.2. The figure introduces a “Discovery Manager” (DM) which is stands at

 122

one level above the ICB in the hierarchy of the URDS. The DM is needed to mediate

between the different URDS instances and the System Integrator (SI), introduced in

[HUA03], which performs the function of composing the actual distributed application

under the UniFrame paradigm.

Figure 6.2 Participation of the Discovery Manager within the UniFrame

 123

The figure shows the participation of the Discovery Manager within the

UniFrame paradigm, with respect to the UniFrame discovery process. The entire process

of handling the query was explained in brief in Chapter 2. In Figure 6.2, the main focus is

the contribution of the Discovery Manager in handling the discovery process. The figure

shows that the user submits a system query to the UniFrame system which then gets

interpreted into a standard form, XML or some other machine readable format based on

TLG, by a query interpreter. The query is then decomposed into queries for the individual

components using the GDM (UniFrame QoS framework and the

composition/decomposition model). These queries are then passed on to the Discovery

Manager by the System’s Integrator. The different discovery services that can participate

in satisfying the queries are known to the Discovery Manager (through a protocol

discussed later). Hence, the DM delegates each query to the known Link Managers. The

Link Managers coordinate with each other to form a federated search space. After the

results have been retrieved, the DM returns them back to the System Integrator. The

System Integrator now continues with its task of building the distributed system using the

Glue-Wrapper generator, out of the discovered components. The DM acts as the authority

responsible for handling the entire discovery process across all the URDSs registered

with it. Heterogeneous Link Managers also holds the problem of the communication

between DM and these heterogeneous Link Managers. However as a part of this study,

only the heterogeneity between Link Managers will be addressed while the

interoperability between DM and the Link Managers is a future work in this direction.

There can be multiple options associated with every different scenario of the architecture

proposed in this study. The next section identifies all such situations for the above

architecture and outlines the different options for each.

6.2 Different Points of Consideration

Following are the various issues that need to be considered while concretizing the

architecture shown in Figure 6.2:

 124

Entity of the URDS responsible to register the URDS with the DM: As indicated

in Chapter 5, the Domain Security Manager authenticates all the principals of a URDS

instance before they can operate within the URDS. It is the central authority for any

URDS and starts up before any other entities within the URDS. Therefore, the

architecture proposes that it should be the DSM which registers its URDS instance with

the DM. There could be two scenarios to this approach:

� DSM registers the URDS on its start up marking the availability of associated

URDS. Once the DSM is known to the DM, it can also be polled to query for the

availability of the associated URDS. The credentials (discussed later) will be

applicable at that point.

� A second solution is that instead of the DSM, it is the onus of the DM to build its

repository of known URDS instances by polling the network to locate available

instances of the URDS. In this case again the DM should establish a

communication with the DSMs of the discovery services since it acts as a

centralized authority for a URDS. The DM can then query it to establish it as

authenticated URDS of the UniFrame system. The scenario is similar to the

communication between the Headhunters and the Active Registries, but at a

higher hierarchical level.

Credentials and Information of a URDS registered with the DM: DSM at the time

of registration with the Discovery Manager should be able to claim that its principals

(namely the HHs, ARs, QMs, AM etc) constitute a valid instance of a URDS. This

requires some form of credentials to be provided by the DSM to the DM. The credentials

serve two purposes: a) serve as identification for a URDS which aids in future

communication between the DM and the URDS, and b) provides the DM with the various

details of the URDS, namely the principals and associated QoS values. This fact is

applicable in both the cases discussed above – DSM itself going to DM or the DM

polling for the available services. Since every URDS is also a service with a well-defined

role and its own set of resources, every URDS instance could hence have an associated

UMM specifications. UMM specifications could include the details of various prinicipals

 125

in the system, for example, the location of the access point (or the entry point, discussed

later) of the URDS and the QoS values of the URDS. These set of specifications would

be need to be however dynamic since the URDS has a dynamic participation of the

entities and QoS values could build or vary over a period of time and performance. This

area is not investigated in this thesis and can be a possible direction for future work.

Possible credentials for DSM and its URDS could be:

Class Credentials

{ string UmmSpecURL;
 string DSMid; � checked to see if it is a valid DSM
 ……………<other parameters>
}

UmmSpecURL – location of the UMM specification of the URDS instance of the DSM.

Entry point to a URDS instance: Since the QM and LM of the URDS handle the

propagation of the query, there could be multiple access points to it. In case the QM is the

entry point, it can collect the results for the query from the URDS it is associated with

and then based on the policies put in place; it can propagate it to a LM for getting a

different set of results. Or the query could also enter an instance through the Link

Manager and then be handled by the LM based on the policies in place. However,

multiple access points pose the overhead of ensuring the entry of legitimate users to use

the discovery service.

One possible solution to the question could be the return parameter of registration

by the DSM. The return parameter will be a unique token serving two purposes:

1. Authentication of the DSM as a representative of a legal instance of URDS based

on the credentials submitted.

2. Establishment of the Discovery Manager as a valid client of the URDS. Hence, it

can now pass the query either through the LM or the QM as long as it had made

its token available to the DSM. DSM should then replicate the tokens with all its

entry points.

 126

Protocol for query propagation by the DM: The experimentation for this thesis

has assumed that the DM will maintain a list of the instances of the URDSs which it finds

or registers with it, whatever is the case. The maintenance of this list can be carried out in

the following ways:

1. It could be maintained as a central repository list by the DM. However, in future

if there are multiple DMs which can be contacted by the system integrator, then

the list replication becomes a challenge in this case. Once the system becomes

large there is a need to avoid inconsistency in the values the list contained at

different DMs. Hence, a replication protocol needs to be employed in order for

different DMs to have the knowledge of different URDSs that register with

different DMs across the network.

2. Every DM could have a selected number of URDSs on their lists. This selection

could be made on a premise such as maintaining the list only for the first “n”

number of URDS that register with it. Other discovery services however would be

rejected and could be directed to other DMs.

Once the list is maintained by the DM, the next issue is as to what protocol should

be employed to propagate query to these URDSs on the list. Options for these are:

1. The DM can just pick up a random URDS on the list and then pass the list of the

remaining services to this URDS for further propagation. However, again at a

very large scale, there is always an overhead associated with passing at entire list

for every query the DM receives.

2. With every query received by the DM, the DM picks up a URDS (again at

random or the first one in the list) from the list it maintains and then passes only

the query ahead to a URDS. All the URDS instances are periodically passed on a

list of the URDS known to the DM. And on the event of receiving the query, the

DM just needs to pass the query. This can lead to the overhead to network

resources usage required for the periodic multicast of the list of LMs. However,

this overcomes the overhead of passing the entire list of LMs with every query

received by the DM. If a system is to be composed of a large number of

 127

components, the overhead of passing the list of all the known LMs with each

query could be large and hence can be avoided by this option.

3. The DM does not need to pass any kind of list of the existing URDS on the

network. The onus could be on the LM of each URDS since it has to link to other

URDS instances. Once the DM has passed on the query to one LM (choosing

from the list it maintains), the LM there on takes the responsibility for the

propagation of the query (addressed by the next question).

Protocol for a LM to know the existence of other LMs on the network: The

question has many manifolds. The answer depends on as to how the query propagation is

actually started by the DM in the first place. The different scenarios possible are:

1. Knowing it through the DM

i. List of all the LMs knows to the DM is passed with every query propagated

by the DM to the LM. This communication pattern is employed and

experimented with when the QM contacts the HH with a query [MYS04].

ii. Or the list is passed periodically from the DM to all the LMs. This is the

scenario that will be implemented for the current scenario.

2. Self-acquaintance

Every LM spools the network periodically to acquaint itself with the other

existing LMs on the network. The LMs which respond to this broadcast get added

to the known LM list of the querying LM. This communication pattern has been

adopted for the current adaptation of communication between the headhunters and

the active registries.

There could be multiple methods of learning about acquaintances. One of the

algorithms is discussed in [PEN01]. It proposes a method for an entity to automatically

learn the “best” acquaintances on the basis of the past experiences of interaction. This

method is based on a reinforcement machine learning algorithm, called Pursuit Algorithm

[THA85, MUK89]. A learning experiment for the entity takes place when its policy

requires the propagation of the query to a remote entity. At that point, it chooses the

 128

entity from the list of known remote entities based on a ranking which it assigns to them

from the past experience; based on sampling set of vectors based on Pursuit Algorithm.

For more information on Pursuit Algorithm, the reader is directed to [THA85, MUK89].

When the results of a query arrive, they are chosen on the basis on certain criteria:

First Arrival: the results which arrive the fastest are the “best”, i.e. the entity which can

return the results for a query the fastest or is geographically the closest will give the

“best” results, and,

Classification quality: The thesis outlines a principle of choosing the best result in terms

of the quality of the results – in terms of the best matching criteria. The criteria can be

applied to the current context as the “Number of results returned for a given query”.

Based on the above criteria, there could be two values associated with every query

response - tth and nth - threshold values for the response time and number of matching

components respectively. Once the “best” set of results has been chosen, the

corresponding LM (or multiple LMs) is/are given a reward of +1 in the ranking of the

LMs. Else if the LM fails to deliver results above the threshold values, the ranking is set

by -1. Every time a query is propagated, the LMs are queried based on their ranking, or in

other words the past history. [PEN01] shows that communication with remote agents

based on a similar type of past experience yields a higher performance than other

communication mechanisms where the communication was done on a random basis or

any other such mechanisms.

Protocol for query propagation between the URDS instances:

1. Results are collected by the LM to which the query is passed in the first place by the

DM. This LM, called the Parent LM, can query the other LMs known to it using one

of the mechanisms mentioned above. The “Parent LM” and the rest of the LMs

spanning the same search space (i.e. registered with the same DM), then form a

propagation tree in which the query propagates from the root node (“Parent LM”) to

the leaf nodes. Results are finally returned back to the DM the root node LM. This

 129

propagation technique has been experimented with the query propagation between the

HHs and has been discussed in Chapter 5. There could be two options for this case

� Parent LM collects results from all the LMs known to it. However, this has an

associated overhead in terms of performance. In case of a large number of LMs

known to the Parent LM, the process might not be efficient to extend the search to

such a large scope and can retrieve better results if the search is scoped by some

parameters such as history of the known LMs, discussed next.

� Results could again be collected from different discovery services by one parent

LM, as in the above case, but this time the LM collects the results only from a

subset of the known LMs, based on the known history of the LMs. The algorithm

for collecting results from the remote entities based on the past experience and

history has been discussed earlier and more details can be found in [PEN01].

2. Every LM who receives the query searches its own URDS for the results and then

passes the query to the one of the other LMs in its list of known LMs. The next LM in

the chain then takes over the propagation of the query. The process repeats itself till

all the LMs in the list are exhausted. Since every LM associated with a DM knows

the location of the DM, the last LM in the chain of query propagation can submit the

results for that query to the DM. The mechanism requires a book-keeping

methodology in order to ensure that there are no loops in the propagation of the

query. For example, a possible solution can be that the DM passes the list of the

known LMs to the first LM along with the query. After a LM processes the query in

its own URDS, the LM location is removed from the list and the query with the list of

the remaining LMs is propagated to the next LM. The process continues till the list is

exhausted. However, the approach incorporates the overhead of passing the list along

with the query every time on a query propagation.

6.3 Chosen Scenario for Experimentation

From all the above mentioned cases, for the current prototype implementation, the

following sequence of events have been selected from a perspective of experimentation

 130

� Discovery Manager acts as a centralized location of all the registered discovery

services. Hence, in the case of multiple DMs (targeted by a single System

Integrator or by multiple System Integrators), the system can be further scaled

and/or scoped. This could imply that the components retrived from one DM and

one SI, lead to the formation of one sub-system which can then be composed to

form a larger system made up of multiple smaller distributed systems. Each DM

would be responsible for the discovery of components needed to build one single

sub-system.

� UMM specifications for a URDS: For the current implementation, only the ID of

the URDS would be filled in. In addition, the domain name (as Discovery) and

registration entity as location of the Discovery Manager is also included. The ID

would be the location of the access point (to be discussed in next question) of the

URDS and can be used by the Discovery Manager to route the queries to that

URDS. The protocol of communication or propagation of query will be discussed

later.

� Link Manager acts as the sole entry point to a URDS. As a future work; even

though now the QM can be queried to retrieve the results of a query through a

client, the necessary security mechanism needs to be ensured that such a client

can be authenticated before the query is processed. Right now the authentication

is needed only at the end of the LM before the query processing can be initiated.

The LM receives a token from the DM along with the query, and it can only

become the recipient of the token if its location was made known to the DM by

the DSM upon the URDS registration.

� DSM starts up and authenticates its URDS with the DM. It passes the credentials

(URDS UMM specifications URL and its DSM id) to the DM. The URDS UMM

specifications have the <LinkManager> as one of the tags. Hence, when the DSM

registers, the DM parses the <LinkManager> to get the location of the LMs and

stores it in its database of the known LMs.

� DM periodically passes the list of all the registered LMs to every LM. This

reduces the overhead of passing the entire list of the LMs with every query

 131

received by the DM. For example, a single system query could be decomposed

into a large number of components’ queries. However, as the DM has already

been periodically propagating the list of LMs to every LM, the queries need not

be propagated along with the list.

� LM receives the list and refreshes its database of known LMs with the new list

which it periodically receives from the DM. Also, periodically the DM will be

spooling the known LMs to see if they are alive. This could also have been done

by the LM but since the DM holds the responsibility of propagating the list of the

known LMs, in this scenario the DM also takes in the responsibility to keep the

list updated.

� Upon receiving a query from the SI, the DM picks up a random LM (prototype:

the first one) from the known LMs list and passes the query to it.

� Protocol for propagation of query within the LMs: One LM checks the policy and

then propagates it further to other LM. Right now since there is only one DM, all

the LMs are aware of the location of the DM supplied to them by the DSM when

the LM authenticates itself with the DSM on startup. Also, there could also be a

policy associated with the query when it comes from the DM. The DM can attach

this policy with the query based on the time sensitiveness of the result retrieval of

the query. For example, if the DM is informed by the SI that the result retrieval

time for a particular query is time sensitive, then the DM can associate a max

limit of components to be retrieved for a query. When a LM receives a query, it

first checks the number of components retrieved for that query (since the previous

LM passes it to the LM), and if needed it executes the query or else passes the

query to the next LM in the list. When the LM tries to contact the other LM, it –

“Linking Dock” – placeholder of the connector (part of it since the other part will

be in the Lining dock of the other LM) instantiated by the GWG when the other

LM is from another component model.

� The last LM in the list of processing queries submits all the results to the DM.

 132

6.4 DM Architecture

Every system query qs, in a standard form is decomposed into a set of individual

queries,{qc1, qc2, qc3…..qcn}, for individual components required for the system. The DM

is handed all these qc by the system integrator. The DM implements a certain

functionality to handle the discovery of the components based on qc. These functions

have been outlined in Section 6.4.1 followed by the policies that the DM implements to

manage the discovery process. Section 6.4.3 discusses the algorithms that constitute the

functionality of the DM.

6.4.1 Functions

The DM supports the following set of functions. The algorithm for each of the

functions will be discussed in Section 6.4.3.

Register URDS Instance: The function of DM allows the DSM of an URDS

instance to register it service with the DM and participate in query handling.

Refresh List of Known LMs: The DM refreshes its list of known LMs by

periodically contacting the known LMs and checking if they are alive. The LMs which do

not respond are cached as dead LMs. If the URDS DSM attempts to try and re-register

within a particular interval of time, the LM is then restored to the list of active LMs. This

requires the fault tolerance on the part of the DSM to be aware of its LM existence and

then try and re-register the URDS with the DM.

Periodically propagate List of known LMs: The DM periodically propagates the

list of its known LMs to all the LMs. This function serves as a means to make the LM

aware of the other LMs to which it can communicate with in order to achieve query

propagation.

 133

Initiate the Discovery of query qc: For every qc, the DM initiates the discovery

process between the URDS instances registered with the DM.

Submit Results for query qc: Since the LMs employ a chain protocol of handling

the propagation of every qc, the last LM in the chain submits the results to the DM. the

DM provides the submission of the results which are identified with the help of the query

id accompanying the results.

6.4.2 Policies

The DM needs to employ certain policies which administrate the propagation of

queries between different discovery services. For now, only one policy to limit the extent

of search has been outlined.

SearchExtentLimit Policy: Nmax|qc can be specified with every component query

qc to limit the number of services to be returned for every qc. This number can be decided

on the time sensitiveness of each query qc. The policy acts as an optimization policy since

it avoids a long delay in retrieving the information for every qc and hence the system

generation process can be carried out in a timely manner.

6.4.3 Algorithms Supported by DM

6.4.3.1 Register URDS Instance

Figure 6.3 depicts this algorithm. On the start up of a URDS instance, the DSM

contacts the DM to register the instance of the URDS. The credentials consisting of the

UMM specifications of the URDS are submitted to the DM. The dynamic nature of the

UMM specifications requires some form of protocol to refresh the values of the UMM

specifications at end of the DM. However, the scenario has not been explored by the

 134

study as it lies out of the scope of the thesis. Also, there needs to be a way to claim from

the UMM specifications prove a valid instance of the URDS. This could be checked on

the basis of the QoS of the UMM specifications registered or some other form of

mechanism to ensure validity. The topic however lies out of the scope of the study.

REGISTER_URDS
IN: URDS_Credentials
OUT: Token
IF (URDS_ID does not exists in Database)
 Add URDS specifications
 Return Valid Token
ELSE
 Registration Failed
 Return Empty Token
END IF
END REGISTER_URDS

Figure 6.3 Algorithm: Register URDS instance

The LM location is then parsed by the DM from these UMM specifications and

added to its list of its known LMs.

6.4.3.2 Refresh the List of Known LMs

The DM periodically contacts all the LMs in its list to verify if they are alive. The

list is updated with the statsThe algorithm for the bookkeeping is depicted in Figure 6.4.

The DM contacts every LM periodically and if the LM responds to its request it is

marked as alive and is available for future query propagations. If the test however fails,

the LM is removed from the list of alive LMs and then shifted to the list of past LMs. In

the next phase, each of the past LMs is now again checked to check the timestamp on the

LM. If the DSM of the corresponding URDS has attempted to re-register the URDS and

the LM with the DM, the LM would be removed from the list of Past LMs to the list of

alive LMs. However, if the timestamp is greater than the Tmax timelimit, the LM is

declared to be dead and the DSM of the URDS now needs to register.

 135

REFRESH_LIST_KNOWN_LMs
 For each LM in ListOfKnownLMs
 If ContactLM.Exists = True
 Update LM with latest contact information
 Else if ContactLM.Exists = false
 For n=0 to nretry, Retry contacting LM
 //Retry for a retry limit, nretry
 If number of attempts = nretry,

 Remove LM from the list of alive LMs

Cache LM to the list of Past LMs //the LM needs to re-
register with the token it was given by the DM during
the first registration

 End For
 For each LM in PastLMs
 If timestamp (last modified time) > Tmax
 Remove the LM from the database //if a LM

was once declared as dead, and it did
not respond to re-register within a time
interval of Tmax, then remove it from
the list of cached LMs. Caching helps in
giving the same token with a renewed
time stamp to the LM which contacts
again

 End For
END REFRESH_LIST_KNOWN_LMs

Figure 6.4 Algorithm: Refresh list of known LMs

6.4.3.3 Propagate the List of Known LMs to Every LM

The algorithm is depicted in Figure 6.5. The DM uses the algorithm to propagate

its list of known LMs to all the registered LMs on a periodic basis. For each LM in its

list, it contacts the LM and if it responds to its request, it updates the information of the

LM. If the communication fails to be established, it attempts a retry for a certain value

nretry and even if the communicatin fails, the LM is marked as dead by removing it from

its list of known LMs and caching it in the list of past LMs. The LM can be put back in

its list of alive LMs by the use of the REFRESH_LIST_KNOWN_LMs algorithm as

shown in Figure 6.4.

 136

PROPAGATE_LIST_KNOWN_LMs
 FOR each LM in ListOfKnownLMs

If ContactLMExists = True
 LM.UpdateKnownLMs
 //invoke the “UpdateKnownLMs” function on
 the contacted LM.

Else If ContactLM.Exists = False //unable to contact
 For n=0 to nretry, Retry contacting LM //Retry for a retry limit, nretry

 If number of attempts = nretry,
 //Declare the LM as dead
 Remove LM from the list of alive LMs

Cache LM to the list of Past LMs
//the LM needs to re-register
with the token it was given by
the DM during the first
registration

End FOR
END PROPAGATE_LIST_KNOWN_LMs

Figure 6.5 Algorithm: Propagate list of known LMs

6.4.3.4 Initiate the Discovery Process for qc

This algorithm is employed by the DM to initiate the process of query

propagation on the event of receiving a query from the system integrator. It receives the

component query, qc, along with the ID of the query given by the system integrator. It

adds the query to its list of current processing queries and sets the status as “New”. The

query is then propagated to a random LM from its list of known LMs. Once the query

handling is successful, the status is set as pending and updated when the results are

submitted by the LM. Figure 6.6 depicts this algorithm.

MANAGE_QUERY_PROCESSING
IN: qc, queryID

//component query qc has been assigned a unique
query ID by the system’s integrator

 Add the queryID to the list of CurrentSystemQueries

Figure 6.6 Algorithm: Initiate discovery process by the DM

 137

Update Status = New
Pick a random LM from ListOfKnownLMs
Call LM. HANDLE_QUERY_PROPAGATION
Update Status=Pending for QueryID

END MANAGE_QUERY_PROCESSING

Figrue 6.6 Continued

6.4.3.5 Deposit Results – Invoked by the LM Submitting Results for a Query

This algorithm is followed by the DM when a LM submits its results for a given

query. The DM checks the QueryID of the query. If it exists in its database of

CurrentSystemQueries, the results of the query are stored and the status is updated from

“New” to “Processed”. The results are then returned back to the System Integrator.

However, if the query Id does not exists with the DM, the DM discards the results since

the query was not routed through this DM. The algorithm is depicted in Figure 6.7.

SUBMIT_QUERY_RESULTS
IN: QueryID, Results
IF (QueryID exists in CurrentSystemQueries)

//“CurrentSystemQueries” is a store of component
queries which are currently in process by the URDS
system under the control of this DM

 Update the status of the query as “Processed”
 Update the query results “Results”
 Return <Results, QueryID> to System Integrator
ELSE

Discard the results
//the results do no belong to this DM
//may be the query belongs to another client or DM

END SUBMIT_QUERY_RESULTS

Figure 6.7 Algorithm: Submission of results to DM

6.5 LM Architecture

The LM implements a set of functions based on the chosen scenario of query

propagation. The following sections outline the implemented set of functions by the LM

followed by the policies and the algorithms incorporated as part of the functions.

 138

6.5.1 Functions

InstantiateLM: Prepares the different threads of the LM.

PerformSearch: Depending on the policy for the LM, the LM hands over the

query received to the QM belonging to its own URDS. This function provides the

necessary functionality.

UpdateKnownLMs: On receiving the list of LMs from the DM, the LM refreshes

its database of known LMs to be used for propagation.

PropagateQuery: The function defines the protocol to propagate the received

query from the DM or the previous LM to the other known LMs.

6.5.2 Policies

The policies govern the behavior of the LM at runtime. Policies are provided as

name-value pair and can be grouped into two categories: 1) Policies that govern the

extent of the search scope and 2) Policies that determine the functionality applied to a

query execution. The examples of search scoping policies are i) an upper bound on the

number of services to be searched from, ii) an upper bound and lower bound on the

number of services to be returned.

The aim of the chapter is to study the linking of the discovery services; however,

since the underlying motive continues to be to explore the issue with respect to the .NET

component model, there exists a need to address the issue of with respect to the .NET

component model. Hence it becomes important to study the linking of discovery services

with the issue of interoperability between two heterogeneous component models. The

following section explores this issue and outlines an approach adopted for the case-study.

Since Chapter 5 provided an analysis of the .NET and Java RMI URDS, it is best suited

 139

to experiment the interoperation with respect to URDSs belonging to the two component

models. Section 6.6 provides the necessary details.

6.5.3 Handling Interoperability with a Heterogeneous LM

The proposed LM handles interoperability with a LM in a component model

different from its own, by means of a connector which encapsulates the interoperability

mechanism and is generated with the help of the GWG. The GWG uses the connector

model which has been discussed in Chapter 3 and illustrated in Section 5.3.2, Figure 5.8.

Since every LM during the process of query propagation, may need to connect to a LM in

the other component model; there exists a need for the LM to provide for a “Linking

Dock” where the connector can be instantiated by the GWG. The Linking Dock specifies

the environment where the connector will be instantiated by the GWG and its

specifications are provided to the GWG partially by the GDM and partially by the LM.

The process is now discussed and is based on the work by [BUL00].

6.5.3.1 Connector Generation for Link Manager

The connector model was discussed in Chapter 3 and then also briefly in Chapter

5. This section briefly discusses the generation of a connector for the LM which enables

connecting heterogeneous ICBs. The work in [BUL00] proposes a model for the

automatic generation of the connectors and forms the basis of the approach discussed in

this section.

The typical lifecycle of a connector has been depicted in Figure 6.8.

Design: Since the connector frame specifies a black-box view of a connector, it

represents the most generic form of a connector specification and constitutes the first

stage in the connector lifecycle. The Connector frame only specifies the connector

endpoints (roles) which may be generic or may be bound to a particular interface. In the

case of LM, since the interface is known by the GDM as part of the Abstract Component

 140

Model, the connector frame for the LM can be bound to its particular interface and its

specifications for the LMs can be stored in the knowledgebase.

Development: Since the connector frame is only a black-box view of the

connector, it can be implemented by multiple architectures. Hence, once the connector

frame has been defined, the next step is the definition of the architecture of the connector.

The architecture for the LM could be predefined since the LM is predefined as part of the

UniFrame system. The architecture specifies the type and instances of the primitive

elements which form the connector implementation and the bindings between them.

Since the architecture is inherently distributed, every primitive element is defined in a

way to be contained within a distribution unit. The explicit specification of distribution

boundary is also included in architecture specifications. The architecture is specified

during the development stage and the specifications are flexible to be extended during the

deployment. Since the architecture of the LM can be predefined, the architecture for the

connector of LM can be a part of the knowledgebase.

Deployment: It is during the deployment stage that appropriate implementations

are assigned to the primitive elements of the connector. Hence, the connector’s interface

can be further modified (if need be) and behavior can be modified by changing the

implementations of the primitive elements. The implementations are generated on the

basis of the deployment descriptor given to the GWG by the LM. For example, the

deployment descriptor can consist of the <Client_LM_Component Model,

Server_LM_ComponentModel, Client LM’s Linking Dock Specifications>where

Client_LM_Component_Model = Component Model of the LM which requests the

instantiation of the connector

Server_LM_Component_Model = Component Model of the LM to which the client LM

wants to connect to.

Client LM’s Linking Dock Specifications = specifications of the Linking Dock of the

client LM in which a connector unit should be instantiated by the GWG.

 141

Hence, on the basis of the deployment descriptor and the pre-defined connector

architecture for the LM connectors, the GWG generates the necessary connector and

returns to the client LM a reference or handle to it.

The architecture of the connector generator based on the connector lifecycle

depicted in Figure 6.8 has been outlined in [BUL00]. In line with the idea of two

independent abstractions, namely the primitive elements and the connector architecture,

there are two generators which handle the task of connector generation. These are

connector generator (CG) and element adaptor (EA). The generator is made up of several

modules which can be generic or implement generation of one or more connectors. They

can implement it using predefined code for each connector, or they can use connector

architecture for more automated generation. The generator modules use the element

adaptor for generating the building blocks of the primitive elements. The generator

modules can also house various vendor-specific connector mechanisms which can help

generate primitive elements incorporating these mechanisms. This describes the way in

which the bridge used for the experimentation for the case study can become a part of the

glue-wrapper generator. [BUL00] provides further details on the proposed approach of

the connector-generator. The project also implements a case study incorporating the

interoperability between Java RMI and CORBA. However, the prototype validates

interoperability across different component models but same language, Java. As part of a

series of personal email communications [EMA03b], Tomas Bures, lead person of the

project in [BUL00] confirms that interoperability between .NET and Java RMI model has

not been experimented in the project and the proposed model of automation of

connectors. Section 6.6 attempts the interoperability between these two component

models in the context of linking discovery services.

 142

STAGE 1: DESIGN
CONNECTOR FRAME

ROLES

STAGE 2: DEVELOPMENT
PRIMITIVE ELEMENT

ARCHITECTURE
- Element Types
- Element Bindings
- Groupings into Connector
Units

STAGE 3: DEPLOYMENT
IMPLEMENTATION FOR

EACH PRIMITIVE
ELEMENT

 GDM KnowledgeBase:
Abstract Connector Model

for LM Connectors

STAGE 4: RUNTIME
Additional Connector

Parameterization
during the runtime

DEPLOYMENT
DESCRIPTOR

Additional parameters for
the implementation of the

primitive elements,
e.g.adaptor, for a particular

component model
(Supplied by LM)

1

n

1

n

1

n

Figure 6.8 Connector lifecycle

 143

6.5.4 Algorithms Supported

This section lists the various algorithms that are supported by the LM with the

chosen architecture.

6.5.4.1 Algorithm for LM Initialization

The algorithm initializes the entire LM process for its start-up. This can include

some input from the ICB configuration manager – such as setting the policies etc. Figure

6.9 depicts this algorithm.

LM_INITIALIZATION

 ACTIVATE LM_DM_LISTENER_UPDATE_KNOWN_LMs

 ACTIVATE LM_LINKER_DOCK

ACTIVATE LM_QUERY_PROPAGATE_SERVER

ACTIVATE LM_CLIENT_REQUEST_HANDLER

END_LM_INITIALIZATION

Figure 6.9 Algorithm: LM initialization

The algorithm to initialize the LM begins with initializing the DM listener thread

so that its database can be updated with the registered LMs of the DM. This needs to be

the first step since at any time a client request comes in, the database of the LM’s known

LMs should be updated and the LM should be in a state of propagating the query to other

LM depending on the policy. Secondly, the LM initializes its “Linking Dock”, to prepare

for instantiation of the connector by the GWG in case the LM to be contacted is

heterogeneous. And now the LM initializes the query propagation service. After all these

services have been initialized, the LM now initializes the request handler to accept any

incoming requests – by the DM.

 144

6.5.4.2 Algorithm for Updating Database of Known LMs

The set of operations are performed periodically by the LM upon receiving the list

of LMs from the DM. It is the responsibility of the DM to keep the list updated. Hence,

upon the receiving the list from the DM, the LM checks its list for every entry of the LM

and if it exists, it is updated with its latest information from the DM else it is inserted.

Figure 6.10 outlines the algorithm.

LM_DM_LISTENER_UPDATE_KNOWN_LMs
IN: ListOfKnownLMs_DM
OUT: Success/Failure

For each LM_Location in ListOfKnownLMs_DM
 If LM_Location exists in MyDatabase
 Update LM_Location
 Else

Insert LM_Location
 End For

END LM_DM_LISTENER_UPDATE_KNOWN_LMs

Figure 6.10 Algorithm: Algorithm for updating list of known LMs

6.5.4.3 Initialize the Linking Dock

The linking dock is represented in terms of an object of the type “Linking Dock”

which supports the standard interface of the Link Manger enabling other LMs to

communicate with it in a standard form. The class in instantiated with the deployment

descriptor of its linking dock and then registered with the GWG which can later

instantiate connectors using this reference (Figure 6.11).

LM_LINKER_DOCK
//Initialize the environment for instantiating connector
Linking Dock LD = new Linking Dock(Deployment Descriptor)

 //the class acts as the representative of the Linking Dock of the LM

Figure 6.11 Algorithm: Initialization of the Linking Dock

 145

//it has a predefined interface of a
standard LM and is also used by the
GWG for future communication for
connector instantiation

GWG.registerLinkingDock(LD)
//register the linking dock with the
GWG providing the necessary details
of its linking dock to the GWG in
form of a deployment descriptor of
the linking dock (Figure 6.8). This
allows the GWG to instantiate the
necessary connector in this LD in the
future.

END LM_LINKER_DOCK

Figure 6.11 Continued

6.5.4.4 Algorithm for Performing Search in Own URDS

The algorithm to collect the results from the LM’s own URDS. The LM passes

the query to the QM and from there on the discovery process is carried out by the URDS,

as discussed in some of the earlier sections (Figure 6.12).

PERFORM_SEARCH
IN: query
OUT: Results
 Results = myQM.PerformSearch(Query, QueryID)
 //Get Results by passing query to own QM
END PERFORM_SEARCH

Figure 6.12 Algorithm: Handing the query for search in own URDS

6.5.4.5 Algorithm for Handling Query Propagation from the Client

The inputs to a LM at the point of entry of a query are, the query, the ID of query

which can also be retrieved from the query object as well, Nmax: is the maximum

number of components specified by the DM for a particular query and Rprev is the

 146

number of results obtained from the previous LM in the chain. The LM is configured

with two policies: a) Policy_Number_Components and b) Polic_Extent_Search_Scope. a)

is a local policy configuration of the LM which defines the minimum number of

components that should be retrieved from the search results of its own URDS. b) can

either have values as “Always” or “Null”. “Always” implies that irrespective of the value

of Rprev, the LM propagates the query to its own URDS and the results are added to the

list of results from the previous LM. Since, the algorithm incorporated a lot of details it

has been depicted in the flowchart of Figure 6.14 and outlined by the following

pseudocode (Figure 6.13).

LM_CLIENT_REQUEST_HANDLER:
HANDLE_QUERY_PROPAGATION
IN: Query, QueryID, Nmax, Rprev,
KNOWN:Policy_Number_Results , Policy_Extent_SearchScope
OUT: resultTable
 IF QueryID Exists in ProcessedQueries //ProcessedQueries hold the

 IDs of the queries processed by this
LM
 PASS_QUERY_OTHER_LM
 END IF
 ELSE
 CHECK Policy_Extent_SearchScope //policy can be specified as an XML

file for the LM and hence even if the
policy changes, it should be effective
with every new query propagation the
LM undertakes, after the changes have
been made

IF Policy_Extent_SearchScope = “Always”
 //always get results from own URDS
 Results=EXECUTE LM_PERFORM_SEARCH //get the results

from own
URDS
irrespective of
the current
value of Rprev

Figure 6.13 Algorithm: Propagate query to other LMs

 147

IF Results >= Policy_Number_Results //own policy
 IF Results >= Nmax //Nmax given by DM
 DM.SUBMIT_QUERY_RESULTS
 ELSE
 PASS_QUERY_OTHER_LM

 END IF
 ELSE

 PASS_QUERY_OTHER_LM
 END
END IF
ELSE IF Policy_Extent_Search_Scope = “Null”
 IF Rprev >= Nmax
 DM.SubmitResults
 ELSE
 Results=EXECUTE LM_PERFORM_SEARCH

 //Search own
URDS only if
Nmax not
satisfied since
Policy_Extent_
Search_Scope is
Null

 IF Results >= Policy_Number_Results //own policy
 IF Results >= Nmax //Nmax given by DM
 DM.SUBMIT_QUERY_RESULTS
 ELSE
 PASS_QUERY_OTHER_LM

 END IF
 ELSE

 PASS_QUERY_OTHER_LM
 END
 END //for policy check null
END ELSE IF
END
END
END ELSE IF

END HANDLE_QUERY_PROPAGATION

Figure 6.13 Continued

 148

YES

Check if QueryID exists in
myProcessedQueries

database?

NO

On Event: Query
Received

Query Input -From
Discovery
Manager

Select Another
URDS/LM

YES

NO

Submit Results (R
+ Rprev) to DM

YES

Is
Policy_Search_
Scope_Extent
= “Always”?

R = Collect results
from own URDS

Is R >=
Policy_Number

_Results

Is (R+Rprev)
>= Nmax

YES
NO

Is
Rprev>=Nmax

?
NO

YES

NO

Figure 6.14 Query handling by the LM

 149

6.5.4.6 Pass the Query to Other LM

The algorithm is employed by the LM at the point of query propagation to the

other LM. This algorithm employs the contacting the GWG in case of detecting the

heterogeneity of the other LM to be contacted. The algorithm shows that when a LM

detects that the other LM is heterogeneous (the component model information of the LMs

is passed by the DM to all the LMs along with the list of their locations. The DM derives

this information from the UMM specifications of the URDSs registered with it), it

contacts the GWG with parameters as, its own component model and the component

model of the other LM. Since the LM has registered the deployment descriptor of its

Linking Dock with the GWG, the GWG uses the combined information to instantiate the

connector returning back a reference to the LM to invoke. In case of homogeneous LM,

this can be bypassed. Figure 6.15 outlines the algorithm.

LM_QUERY_PROPAGATE_SERVER
 Check the ListOfKnownLMs

 LMnext = Pick a random LM (or based on some ranking)
 IF LMnext.model NOT Equal LM.model

ConnectorReference=ContactGWG
(LM.Model, LMnext.Model)
ConnectorReference.HANDLE_PROPAGATE_QUERY

//the connector is
parameterized to the
same interface as the
LM

 END IF
 ELSE

LMnext.HANDLE_PROPAGATE_QUERY
 END

 END LM_QUERY_PROPAGATE_SERVER

Figure 6.15 Algorithm: Pass the query to other LM

6.6 Experimentation

The experimental prototype for the study consists of spanning the search space of

the URDS across more than one instance of the URDS. As was mentioned in Chapter 5,

 150

there are now two adaptations of the URDS which could be a part of the experiment.

These are Java RMI and .NET Remoting. An architecture consisting of the DM, .NET

URDS (incorporating the .NET LM) and the Java RMI URDS (incorporating the Java

RMI LM) were experimented with to propagate a component query from one instance to

the other instance. Results were collected from both the discovery services and returned

back to the DM. Since the two instances are heterogeneous in nature, a connector

incorporating a .NET-Java bridge was used to achieve the interoperability. The connector

has a simple architecture with the structure as shown in Figure 5.8 and discussed in

Section 5.3.2. That is, at the time, the connector architecture only consisted of the

primitive elements, stub, skeleton and the adaptor. No other primitive elements have been

included to support any QoS-related or other features such as logging, interception etc.

Though such features can be incorporated in the future as part of the knowledgebase

which will be used by the GWG define a different architecture of the connector for

mediating between the LMs. The Interface of the connector supports the LM interface -

ILM. The ILM right now supports only the method for a LM to pass the query to the other

LM. Hence ILM consist of the method “handleQueryPropagation(Query,

<ResultsCollectedTillNow>, Rprev=count of all the previous collected results, Nmax). In

the case of heterogeneous component models, the communication between LMs is carried

out through a connector with a bridge, whereas in the case of homogeneous discovery

services the communication is devoid of the connector. In order to study the effect of this

difference in the performance of the federation of the URDS, two experiments were

performed. These experiments can be divided as:

1. Homogeneous federation behavior: This experiment consisted of propagation of a

query from a Java RMI URDS to another Java RMI URDS and collection of

results based on the alternatives chosen in Section 6.3.

2. Heterogeneous federation behavior: The experiment consisted of federation across

Java RMI and .NET URDSs with the same query propagation protocol.

These categories help to clearly distinguish between the natures of the discovery

services, in terms of their component models and study the role played by heterogeneity

in the federation. However, due to the technological difficulties faced in the

 151

establishment of two one-way bridges on the same machine (for communication between

the Java RMI LM and the .NET LM and .NET LM and Java RMI DM), the propagation

of results was routed back though the same LM which is first in the chain. All the other

details of the process however remained the same. The chain of actions is depicted in

Figure 6.16 and 6.17 for the homogeneous and heterogeneous experiments respectively.

The variables in the figure will be discussed in detail during the analysis of the

experiment in Section 6.6.3. The next section now outlines the experimental set-up for

the two experiments.

6.6.1 Experimental Set-up

The experimental setup consisted of the following individual set ups:

System Integrator and the DM: The System Integrator acts as the client to the

system currently and initiates the discovery process by passing a set of qc to the DM for

each case of the experimentation – homogeneous and heterogeneous discovery services.

The current realization of the UniFrame’s system integrator [HUA01] uses the Java RMI

component model. Hence, to keep this prototype extensible for future integration

purposes, the system integrator has also been developed using the Java RMI model. The

same holds true for the DM as well. Both the entries were deployed on Windows XP

operating system and developed using the JavaTM 2 Platform, Standard Edition (J2SE)

version 1.4 software environment. The hardware consisted of a laptop, Dell Inspiron

8100, P III processor.

.NET URDS: It consisted of the following .NET URDS entities: DSM, HH, QM,

AR, .NET components and the .NET LM. All the entities are developed using the .NET

Remoting model. The DSM, HH, QM, AR comprise the same URDS which was used for

the experimentation of Chapter 5. These entities were deployed on Windows 2000

desktop, Dell Optiplex GX150, P III processor. The LM was deployed in the same

environment as the system integrator and DM, mentioned above.

 152

Java-RMI URDS: Consisted of the following Java-RMI URDS entities: DSM,

HH, QM, AR, Java-RMI components and the Java-RMI LM. The DSM, HH, QM, AR

and the Java-RMI components were developed using the Java-RMI model under the

JavaTM 2 Platform, Standard Edition (J2SE) version 1.4. The entities were deployed on a

Solaris machine hosting the UNIX operating system. However the file system used was

on a UNIX-based server where all the files resided. Hence, the execution of the URDS

system depicted higher retrieval times as will be indicated in the analysis. The Java LM

was deployed in the same environment as the system integrator, DM and the .NET LM.

.NET-LM and Java-RMI LM Connector: For the purpose of the experiment the

connector for the mediation between the two LMs has been manually crafted and placed

in the linking docks of the two LMs. In the current prototype, since only one-way bridge

was used (as explained earlier) for the propagation of the query from the Java LM to the

.NET LM, the connector’s distribution boundary was designed to the place the stub and

the adapter in the linking dock of the Java LM and the skeleton on the .NET LM. The

adapter comprised of the Ja.NET Runtime environment (as discussed in Chapter 2,

Section 2.4.3, and Figure 2.7) and its interface was tuned to that of the LM with manual

intervention. The LM communicates to the heterogeneous LM through the interface of its

Linking Dock. Hence, the connector <stub, adapter, skeleton> was on the laptop hosting

the LMs and the DM.

6.6.2 Experimental Use-Case

Based on the above mentioned outline, the two experiments were performed as

depicted in Figure 6.16 and Figure 6.17. The system integrator submits a set of eleven

queries to the DM in a sequence after an interval of few milliseconds. For every query

received, the DM calculates the time it takes for it to receive back the combined results

from both the URDS instances registered with it.

 153

Figure 6.16 Homogeneous federation experiment

In experiment 1, Figure 6.16, the DM submits the query to a Java-RMI LM which

then implements the “Always” policy for its Poilcy_Search_Extent and hence, propagates

the query to its own Java-RMI URDS. Let S1 be the time taken by the Java-RMI URDS

to retrieve the results for one query (measured at the QM of the URDS). Then the Java-

RMI URDS propagates the same query to the next LM in its list which is homogeneous

in this experiment. Based, on the same policy the LM retrieves results from its own

URDS. Now since the list of known LMs is exhausted, the Java-RMI LM returns the

results back to the previous LM and the results are submitted back to the DM. Since, in

this case the second URDS in the chain is a replica of the first URDS, the time of

computation for the same query can be denoted by S1 as well. Let the time it takes for the

communication between the two URDS be denoted as X and between the DM and the

first Java LM be Z.

Figure 6.17 Heterogeneous federation experiment

 154

Experiment 2, Figure 6.17, consists of the same sequence of the steps as

experiment 1 except that the first Java-RMI LM now propagates the query to a .NET LM.

In this case, since the two URDS instances are heterogeneous in nature, let the time it

takes for the results to be retrieved from the first Java-RMI URDS be S1 (same instance

as the one in the homogenous experiment) and by the .NET URDS be S2. Also, since the

DM still passes the query to the same Java LM in the first place, let Z denote the time it

takes for the DM-Java RMI LM communication. However, the communication between

the two heterogeneous LMs is Java-RMI LM --- Connector --- .NET LM. Therefore, let

Y denote the time taken for the communication in this case (which may or may be equal

to X).

In either of the two cases, time taken for the results retrieval is calculated by the

DM. And approximately, ignoring the small variables in the delays due to the network,

the times will be equal to the sum of the variables identified in the above two use-cases.

Hence, these values can be given by the following equations:

Homogeneous federation: T1 = Z + S1 + X + S1 --------------- (1)

Heterogeneous federation: T2 = Z + S1 + Y + S2 ----------------(2)

The results for the two experiments measuring the values of T1 and T2 have been shown

in the next section along with their analysis.

6.6.3 Results and Analysis

The results for eleven queries presented by the system integrator have been shown

in Table 6.1. The values for the heterogeneous federation lie in the range of 17305 ms to

19097 ms. And the average value is taken as the value of T1=18116.27 ms. The table also

shows the values retrieved for the homogeneous federation which lie in the range of

34420 ms to 36262 ms and average value amounts to T2=35241.73 ms. The difference in

the values can be obtained by subtracting equation (2) from (1),

 155

� T1 – T2 = (Z + S1 + X + S1) – (Z + S1 + Y + S2)

� 35241.73 - 18116.27 = Z + 2S1 + X – Z – S1 – Y – S2

� 17125.46 = S1 – S2 + (X – Y) ------------------- (3)

Due to the principles explained for the Ja.NET bridge in Chapter 2, Section 2.4.3, it was

inferred that the bridge leverages the Remoting paradigm for the communication between

the heterogeneous entities. Hence, in both the homogeneous and the heterogeneous

federations, the communication is using a binary protocol, Java serialization for

homogeneous and Remoting serialization for heterogeneous federation. In addition, since

the heterogeneous federation employs a hand-crafted connector, the additional time

required for the instantiation of the connector in this case has been removed and hence

does not contribute to the value of T2. Thus, it can be said that the difference between X

and Y are negligible.

� (X-Y) <<< //(X-Y) is a very small value whether X>Y or Y>X

� Equation (3) can now be written as 17125.46 = S1 – S2 --------- (4)

Value of S2 was empirically determined as an average during the execution of the

experiment for heterogeneous federation. This value (246.0148 ms) when plugged in

equation (4) gives

17125.46 = S1 – 246.0148

� S1 = 16879.4452 ms

This value was then empirically verified with the execution of the Java RMI URDS

instance and the client query retrieval time measured by the client of the QM. The

empirical value of S1=17846 ms. Since the two values are close enough, it can be said

that the higher values obtained in the case of homogeneous federation is due to the

processing time of the Java-RMI URDS, i.e., higher value of S1. This is attributed to the

experimental set up in which the Java-RMI URDS was deployed and executed. As

mentioned in the experimental set-up, the deployment included a terminal

communicating with the server hosting the file system for the Java RMI URDS; this led

to a higher value of S1. Thus, it can be concluded that even though the connectors

mediate between heterogeneous URDS, their effect on the time it takes for the results to

 156

be retrieved can be small compared to the actual time taken by an individual URDS

instance.

Using the calculated value of S1 and the empirically measured average value of

S2, the values of X and Y can be estimated as follows:

From equation (1),

35241.73 = Z + 2(16879) + X

� 35241.73 = Z + 33758 + X

� X + Z = 35241.73 – 33758

� X + Z = 1483.73

Let Z = constant C, since it is approximately remains the same in both the cases,

� X = 1483.73 – C --------- (5)

From equation (2),

18116.27 = Z + 16879.4452 + 246.0148 + Y

� 18116.27 = 17125.46 + Z + Y

� Y + Z = 990.81

Again, let Z = constant C, since it is approximately remains the same in both the cases,

� Y = 990.81 – C --------- (6)

Equations, (5) and (6) show that both X and Y lie within a small difference of each

other’s values. There have been different parameters which could have affected the

values considered in the calculation (since most of the values are empirically determined)

and are ignored in this analysis. Hence, the values though in close range, it cannot be

determnined as to which could be greater or smaller. But since communication in both

cases was binary, approximate values for X and Y confirm to be not much different from

one another.

 157

Table 6.1 Query results retrieval time measured by the DM in case of
heterogeneous and homogeneous URDS federation

Heterogeneous URDSs
Results Retrieval Time (ms)

Homogeneous URDSs
Results Retrieval Time (ms)

18747 34420

18236 34539

19097 34960

17906 34991

17496 35081

18918 35121

17606 35181

18296 35421

17986 35752

17305 35931

17686 36262

T2 = Average Time (ms) = 18116.27 T1 = Average Time (ms) = 35241.73

S1 = 17846 ms (empirical determination for one query)

S2 = 246.0148 ms (Average)

This chapter studied the issue of heterogeneity and interoperability in the context

of .NET and UniFrame. It helped in evaluating the UniFrame’s concept of discovery

service across heterogeneous component models while providing for a formal approach

to achieve this. The study also establishes the principles of UniFrame’s glue-generation

and the approach for connector generation in achieving the federation of discovery

services across two heterogeneous models - .NET and Java-RMI.

 158

7 CONCLUSION AND FUTURE WORK

As indicated in the chapter one, the three goals of the thesis are:

1. Exploration of the .NET framework for its capability as a paradigm to build

distributed applications by the integration of heterogeneous components

2. Analysis of the adaptation of the UniFrame’s discovery service into .NET

3. How can the existence of multiple component models within UniFrame be

handled?

This chapter concludes the thesis by providing the mechanisms that were adopted in

achieving each of the above goals and the lessons learnt during the process. Section 7.1

provides a summary of the study followed by Section 7.2, which outlines the

contributions of the thesis. This is followed by the future extension to the study in section

7.3. Section 7.4 ends the thesis by providing the conclusions of this study.

7.1 Summary of the Thesis

The most prominent feature of the .NET component model is its in-built support

for the Web Services. The applications built with the .NET framework do not require any

additional tools or wrappers for building .NET Web Services. Web Services is also the

paradigm of the .NET component model, which allows the composition of heterogeneous

components to function as a single distributed application. Therefore, the first objective

of the thesis was achieved by analyzing this framework in particular. The analysis not

only consisted of a study of the Web Services framework but also adopted a collaborative

approach towards UniFrame providing for a comparison-based analysis between the two

 159

paradigms in achieving a similar objective. The study identified metrics necessary for

such a comparison and revealed that although two models can have a common objective,

due to the difference between the underlying approaches there are differences in the way

the process is undertaken with respect to the identified metrics. As a result, there are

differences in the composed system. There are certain areas where the UniFrame

approach provides for a more comprehensive solution while in the others, they both can

complement each other to achieve the necessary task. For example, UniFrame does not

comply with a particular interoperability mechanism to enable communication between

components of heterogeneous component models. It is comprehensive enough to

incorporate different mechanisms depending on the suitability of the application at hand;

this includes Web Services as well (Web Services has also been discussed from the

perspective of an interoperability mechanism by the thesis). Whereas, the Web Services

approach is to leverage the component models such as J2EE, CORBA, etc., to comply to

the Web Services framework in order to achieve the necessary interoperability. The study

thus indicates that the integration environment for any distributed system must entail a

detailed analysis of different choices in terms of the identified metrics.

Based on the study of the comparison metrics provided by the first objective of

the thesis, the discovery service is chosen as the field of exploration for the adaptation of

the UniFrame in the context of .NET. The adaptation of this part of UniFrame into .NET

provides a basis for an extensive experimentation of the .NET computing model in

addition to a thorough evaluation of UniFrame’s adaptability. The approach used for

achieving this objective was empirical in nature involving the design, prototyping and

experimental evaluation of the .NET based discovery service. The prototypical realization

was also compared with a similar adaptation in a different component model (Java RMI).

This comparison indicated that: a) due to the differences in the underlying models of each

paradigm, the creation of a prototypical discovery service required addressing many

platform specific details, and b) despite these differences, the performance of both the

discovery services exhibited similar behavior.

 160

The existence of multiple component models within UniFrame is obvious and

important and equally challenging problem to be tackled. The last objective of the thesis

addressed the problem of heterogeneity between different component models in detail. In

addition to analyzing different interoperability mechanisms, it also experimented with

different commercial bridges for the .NET and Java interoperability. An architecture was

proposed for interoperating between two (.NET and Java-RMI) heterogeneous discovery

services, which was implemented using a specific bridge that was selected as a result of

the analysis of the interoperability mechanism. The prototype was experimented with to

determine the feasibility of creating a federation of heterogeneous discovery service

under the UniFrame paradigm.

7.2 Contributions of the Thesis

This thesis reveals a fact that the .NET component model needs to be leveraged

within a meta-component model such as UniFrame in order to achieve the realization of a

DCS in a complete sense, i.e., keeping the principles of local autonomy, inherent to

component computing, intact by tackling the problem of heterogeneity, which is a core

feature of a DCS. This thesis provides for such an analysis for encompassing the .NET

component model into UniFrame addressing different important concerns of .NET such

as registration, dynamic discovery and interoperability, while utilizing the principles of

UniFrame. On the other end, this thesis also provides for an evaluation of the UniFrame’s

meta-model approach for addressing the issue of heterogeneity and successfully

incorporates the .NET component model into it. The thesis contributes towards the

following main features:

� The research provided for the metrics of comparison between two system

integration platforms – Web Services and UniFrame and outlined an exhaustive

examination both architectural and model-based.

� Construction of a platform-specific architecture (.NET Remoting-based) from a

known platform-independent URDS while providing for all the architecture

mappings by successfully tackling the encountered issues. This in addition

 161

supports an in depth evaluation of the .NET Remoting model supported by

experimental results.

� Provision of an approach for tackling interoperability between different

component models using the connector based technique. The approach is

validated against components that are developed using different languages,

operating systems, and component models. Specifically, the approach is also

validated against .NET and Java RMI component models. The approach is also

flexible for enabling a semi/fully automated generation of glue-wrapper code

(connectors).

� Proposal of a framework for the federation of the URDS instances which spans

across heterogeneous discovery services. The framework is validated with actual

prototypical implementation and experimentation.

7.3 Future Work

In accordance with the goals of the thesis, the future work of the thesis can also be

divided into three categories:

� Analysis of the Web Services and UniFrame paradigms.

o The analysis currently is based on a theoretical investigation with the details

provided for the identified comparison metrics. The analysis can be further

strengthened by providing a case study for the construction of a DCS under

the Web Services and the UniFrame paradigms. The case study can built

around the same metrics as proposed as part of this thesis.

o One possible area of collaboration proposed as a result of the analysis of this

thesis, is the wrapping of components by the Web Services veneer and thereby

also enriching the semantic representation of the Web Services through the

domain-centric approach of the UniFrame. However, this area of collaboration

needs further investigation and concretization forming a part of the future

work of this thesis.

 162

� Adaptation of UniFrame into the .NET model.

o Adaptability of UniFrame has been studied with the adaptation of one of its

constituents, namely the URDS, which included concepts such as registration

and service discovery. A possible future work is to provide for such a

thorough analysis for other constituents such as service descriptions and QoS

validation.

o The experimentation of the .NET URDS was in terms of performance and

behavior. Though the headhunters incorporate fault-handling techniques

[MYS04], it was not tested by means of experimentation, an area which needs

some future work.

o There is also a need for testing further scaling of the .NET URDS by utilizing

different attribute values of the .NET Remoting model. The current

experimentation worked with the default values.

� Interoperability within the context of UniFrame studied with respect to .NET.

o Connector implementation has been tested in the thesis with commercial

bridges. There is a need for a formal specification of the connectors to

incorporate multiple bridging and interoperability mechanisms.

o Design and implementation of the Glue-Wrapper Generator to utilize the

above specifications and automate the generation of the connectors. The thesis

references such as approach but the prototype included only the hand-crafted

connector.

o The thesis experimented .NET’s interoperability with only the Java RMI

component model. The examination should be extended to other component

models as well.

o The incorporated interoperability model of this thesis can be tested and

applied to other entities of the UniFrame model, other than linking discovery

services.

 163

7.4 Conclusions

The thesis has provided an approach for the encompassing of the .NET

component model into the UniFrame paradigm. It addresses two of the three main

challenges (architecture-based interoperability and distributed resource discovery) of the

UniFrame approach with a preliminary exploration of the third challenge (validation of

quality requirements). The study examines the UniFrame’s approach while encompassing

.NET into it and also provides a mechanism for addressing the heterogeneity within the

UniFrame. For the UniFrame paradigm to be able to encompass different component

models, issues such as discovery, description, and integration need to be tackled in the

context of these heterogeneous models. Also, it is necessary that the models, which are to

be included in the UniFrame approach, are studied in a synergy with the principles of the

UniFrame and the approach provided in this thesis can serve as the guideline for

achieving such inclusions.

 164

LIST OF REFERENCES

[AUG00] Auguston, M., “Tools for Program Dynamic Analysis, Testing, and Debugging
Based on Event Grammars,” Proceedings of the 12th International Conference on
Software Engineering and Knowledge Engineering, pp. 159-166, 2000.

[BAL01] Balek, D. and F. Plasil, “Software Connectors and Their Role in Component
Deployment,” In Proceedings of DAIS'01, Krakow, Kluwer, September 2001.

[BAR00] Barrett R. B., “Object-Oriented Natural Language Requirements Specification,”
In Proceedings of ACSC 2000, The 23rd Australasian Computer Science Conference,
Canberra, Australia, pp. 24-30, January 2000.

[BER03] Bertolino, A. and R. Mirandola, “Modeling and Analysis of Non-functional
Propoerties in Component-based Systems,” 2003, http://www1.elsevier.com/gej-
ng/31/29/23/133/50/37/82.6.016.pdf.

[BRA01] Brahnmath, G., “The UniFrame Quality of Service Framework,” MS Thesis,
Department of Computer & Information Science, Indiana University – Purdue University
Indianapolis, December 2002.

[BRI01] JNBridge for .NET-Java Interoperability,
http://www.jnbridge.com/logdemo10.htm.

[BRI02] iHUB Bridge for .NET-Java Interoperability,
http://www.stryon.com/products.asp?s=3.

[BRI03] iHUB Bridge, White paper, http://www.stryon.com/ihubwhitepaper.htm.

[BRI04] Ja.NET Bridging Solution for Java-.NET Interoperability, Intrinsyc, Inc., 2004,
http://j-integra.intrinsyc.com/ja.net/doc/.

 165

[BRI05] Janeva, .NET-CORBA Interoperability Bridge, http://www.borland.com/janeva/.

[BRI06] Borland’s Janeva Tool for CORBA and J2EE Interoperability with .NET,
http://www.borland.com/janeva/.

[BRI07] Gabhart, K., “Java/.NET Interoperability via Shared Databases and Enterprise
Messaging,” http://www.devx.com/interop/Article/19952.

[BUL00] Bulej, L. and B. Tomas, “A Connector Model Suitable for Automatic
Generation of Connectors,” http://nenya.ms.mff.cuni.cz/publications.phtml.

[CAP04] Cape Clear Integration Solution, 2004, http://www.capeclear.com.

[CLI02] Microsoft Online Clipart Gallery, 2002, http://dgl.microsoft.com/default.asp.

[COR01] OMG’s Official CORBA Website, http://www.corba.org/.

[CZA00] Czarnecki, K. and U.W. Eisenecker, Generative Programming: Methods, Tools,
and Applications, Addison-Wesley, 2000.

[CZE99] Czerwinski, S. E., B. Y. Zhao, T. D. Hodes, A. D. Joseph and R. H. Katz, “An
Architecture for a Secure Service Discovery Service,” Proceedings of Mobicom,
1999, http://ninja.cs.berkeley.edu/dist/papers/sds-mobicom.

[DIE03] Dietel, H., P. Dietel, B. DuWaldt and L. Trees, Web Services – A Technical
Introduction, Upper Saddle River, New Jersey, Prentice Hall, 2003.

[DIS01] Coulouris, G., J. Dollimore and T. Kindberg, Distributed Systems – Concepts
and Design, Third Edition, Addison-Wesley, 2001.

[EBX] ebXML, Enabling a Global Electronic Market, http://www.ebxml.org/.

[EMA03a] Personal e-mail communications with Mr. Naufal Khan, Vice-President –
Engineering, Styron, Inc., “The .NET interoperability-related research findings of the
UniFrame team have resulted in the enhancement of our product, iHUB. This is an
example of the research-industry interactions and we believe that research projects, such
as UniFrame, will continue to positively affect the industrial world,” November 2003.

 166

[EMA03b] Personal e-mail communications with Tomas Bures, Author, “A Connector
Model Suitable for Automatic Generation of Connectors,” “As to the .NET framework -
we currently do not support .NET; however, generation of connectors for .NET (probably
using SOAP as a transport method) sounds very interesting to me,” October, 2003.

[FRE02] Freeman J. and J. Hansome, Technical Report, “URDS Prototype,” TR-CIS-
1212-02, 2002.

[GER99] Geraghty, R., S. Joyce, T. Moriarty and G. Noone, “COM – CORBA
Interoperability,” Prentice-Hall, Inc., 1999.

[GLO04] Towards Open Grid Services Architecture (OGSA), 2004,
http://www.globus.org/ogsa/.

[GOK02] Gokhale, A., D. C. Schmidt, B. Natarajan and N. Wang, “Applying Model-
Integrated Computing to Component Middleware and Enterprise Applications,” 2002,
http://www.cse.wustl.edu/~schmidt/PDF/CACM02.pdf.

[GUP03] Gupta, N., R. Raje and A. Olson, “Analysis of the UniFrame and Web Services
paradigms,” SouthEast Software Engineering Conference, Huntsville, Alabama, 2003.

[GUT99a] Guttman, E., C. Perkins, J. Veizades and M. Day, “Service Location
Protocol, Version 2,” IETF, RFC 2608, June 1999, http://www.rfc-
editor.org/rfc/rfc2608.txt.

[HUA01] Huang, Z., “The UniFrame System-Level Generative Programming
Framework,” MS Thesis, Department of Computer & Information Science, Indiana
University – Purdue University Indianapolis, August 2003.

[HUD02] Hudson, M. J., “The Web Services Placebo,” 2002,
http://www.intelligententerprise.com/020917/515e_business1_1.shtml.

[ING02] Personal e-mail communication, Ingo Rammer, Author of books, Advanced
.NET Remoting and Advanced .NET Remoting in VB.NET, June 2002.

[INT01] Guest, S., “Microsoft .NET and Java, Achieving Interoperability,” 2001,
http://www.devx.com/interop/Article/19928/1954?pf=true.

[JAV01] Java 2 Platform, Enterprise Edition, Sun Microsystems, 2001,
http://java.sun.com/j2ee/index.jsp.

 167

[MEH00] Mehta, N., R. N. Medvidovic and S. Phadke, “Towards a Taxonomy of
Software Connectors,” International Conference on Software Engineering, Proceedings
of the 22nd International Conference on Software Engineering, 2000, ISBN:1-58113-
206-9, 2000.

[MEN98] Mencl, V. “Component Definition Language,” Master Thesis, Charles
University, Prague, 1998.

[MIC01a] Obermeyer, P. and J. Hawkins, Microsoft Corporation, “Microsoft .NET
Remoting – A Technical Overview,” Official MSDN Website, 2001,
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dndotnet/html/hawkremoting.asp.

[MIC01] DCOM, Microsoft Corporation, 2001,
http://www.microsoft.com/com/tech/DCOM.asp.

[MIC02] .NET, Microsoft Corporation, http://www.microsoft.com/net/.

[MIC03] Rubiolo, D., J. D. Meier, E. Jezierski and A. Mackman, “Microsoft .NET
Explained,” http://docs.msdnaa.net/ark_new/Webfiles/WhitePapers/nxp2.doc.

[MIC04] Rammer, I., Advanced .NET Remoting, Apress, ISBN: 1590590252, April 2002.

[MIC05] Dhawan, P., “Performance Comparison: .NET Remoting Vs ASP.NET Web
Services,”http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnbda/html/bdadotnetarch14.asp.

[MOC87] Mockapetris, P., “Domain Names – Implementation and Specification,”
RFC 1035, October 1987. http://www.rfc-editor.org/rfc/rfc1035.txt.

[MUK89] Mukhopadhyay, S., and M. A. L. Thathachar, “Associative Learning of
Boolean Functions,” IEEE Transactions on Systems, Man, and Cybernetics, 19:1008-
1015, 1989.

[MYS04] Mysore P., R. R. Raje, A. M. Olson, B. R. Bryant, M. Auguston and C. Burt,
Technical Report, “Scalability and fault handling issues in UniFrame Discovery Service,”
TR-CIS-0705-04, 2004.

[NIN02] Ninja, “The Ninja Project,” 2002, http://ninja.cs.berkeley.edu.

 168

[OMG00] Object Management Group, “Trading Object Service Specification,” Object
Management Group, 2000, ftp://ftp.omg.org/pub/docs/formal/00-06-27.pdf.

[OMG01a] Object Management Group (OMG), “Model Driven
Architecture: A Technical Perspective,” Technical Report, OMG Document No. ab/2001-
02-01/04, February 2001, ftp://ftp.omg.org/pub/docs/ab/01-02-04.pdf.

[OMG01b] Object Management Group, “Naming Service Specification,” Object
Management Group, 2001, ftp://ftp.omg.org/pub/docs/formal/01-02-65.pdf.

[PEN01] Peng, S., “Experiments with distributed multi-agent information filtering
systems,” MS Thesis, Department of Computer & Information Science, Indiana
University – Purdue University, Indianapolis, May 2001.

[PER92] Perry, D., E. and A. L. Wolf, “Foundations for the Study of Software
Architectures,” ACM SIGSOFT Software Engineering Notes, October 1992.

[PIN01] Pinkston, J., “The Ins and Outs of Integration – How EAI differs from B2B
Integration,” Business Integration Journal, 2001,
http://www.eaijournal.com/PDF/Ins&OutsPinkston.pdf.

[RAJ00] Raje, R. R., “UMM: Unified Meta-object Model for Open Distributed Systems,”
Proceedings of ICA3PP 2000, 4th IEEE International Conference, Algorithms and
Architecture for Parallel Processing, pp.454-465, 2000.

[RAJ01] Raje, R. R., M. Auguston, B. R. Bryant, A. Olson and C. Burt, “A Unified
Approach for the Integration of Distributed Heterogeneous Software Components,”
Proceedings of the Monterey Workshop on Engineering Automation for Software
Intensive System Integration, pp. 109-119, 2001.

[RAJ02] Raje, R. R., M. Auguston, B. R. Bryant, A. Olson and C. Burt, “A Quality of
Service-based Framework for Creating Distributed Heterogeneous Software
Components,” Technical Report, Department of Computer and Information Science,
Indiana University – Purdue University Indianapolis, 2002.

.

[RAJ03] Olson, M. A., R. R. Raje, B. R. Bryant, M. Auguston and C. Burt, “UniFrame,
A Unified Framework for Developing Service-oriented, Component-based Distributed
Software Systems,” in Service-Oriented Software System Engineering: Challenges and
Practice, Idea Group, Inc, 2004 (In Press).

 169

[RAP01] Raptis, K., D. Spinellis and S. Katsikas, “Multi-Technology Distributed Objects
and Their Integration,” Computer Standards & Interfaces, pp.157-168, 2001.

[REM04] .NET Framework Developer’s Guide – .NET Remoting Architecture, 2004,
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpguide/html/cpconnetremotingarchitecture.asp.

[SHA96] Shaw, M. and D. Garlan, Software Architecture: Perspectives on Emerging
Discipline, Prentice-Hall, 1996.

[SIR01] Siram, N., “An Architecture for the UniFrame Resource Discovery Service,” MS
Thesis. Indiana University – Purdue University Indianapolis, March 2002.

[SKO03] Skonnard, A., Microsoft MSDN, “Understanding XML Schema,” 2003,
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnxml/html/understandxsd.asp.

[STR04] Stryon Inc., 2004, http://www.stryon.com.

[SUN01a] Sun Microsystems, “Jini Architecture Specification, Version 1.2,” Sun
Microsystems, December 2001, http://www.sun.com/jini/.

[SUN03] Changlin, S., “QOS Composition and Decomposition in UniFrame,” M. S.
Thesis, Department of Computer & Information Science, Indiana University – Purdue
University Indianapolis, June 2003.

[THA85] Thathachar, M. A. L. and P. S. Sastry, “A new approach to the design of
reinforcement schemes for learning automata,” IEEE Transactions on Systems, Man, and
Cybernetics, 15:168-175, 1985.

[THU01] Thuan, T. and H. Lam, .NET Framework Essentials, Chapter 6, Web Services,
2001, http://www.oreilly.com/catalog/dotnetfrmess/chapter/ch06.html.

[VAN65] Van A., “Orthogonal Design and Description of a Formal Language,”
Technical report, Mathematisch Centrum, Amsterdam, 1965.

[WAH97] Wahl, M., T. Howes and S. Kille, “Lightweight Directory Access Protocol
(v3),” IETF RFC 2251, December 1997, http://www.rfc-editor.org/rfc/rfc2251.txt.

 170

[WEB01] The Web Services Community Portal, 2004, http://www.webServices.org.

[WEB02] Samtani, G. and D. Sadhwani, “Web Services and Application Frameworks
Working Together,” 2002,
http://www.webservicesarchitect.com/content/articles/samtani04print.asp.

[WEB03] Building Interoperable Web Service: WS-I Basic Profile 1.0, 2003,
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsvcinter/html/wsi-
bp_chapter1.asp.

 171

APPENDIX

CLASS DIAGRAMS

Link Manager

LinkManagerServer

+handleQueryPropagation() : <unspecified>
+policySearchCount() : bool
+updateListOfKnownLMs()
+contactGWG()

-QMLocation : string
-GWGLocation : string

LinkManager

+getLinkingHandle()
+getQueryProtocol()
+handleQueryPropagation()

LinkingDock

Hosts

HostedBy

Contains

ExistsIn

+getQuery()

-domainName
-Author
-Version
-etc...

QueryProtocol

Uses

UsedBy

Active Registry

+Add()
+Remove()
+stripPathFromFilename()
+Menu()
+DSMSettings()

ActiveRegistry

+Start()
+OnReceive()
+processMulticast()

ListenerThread

+EncryptTripleDES()
+DecryptTripleDES()

CryptoTool

+ContactDSM()

DSMCommThread

+addComp()
+getComponentData()
+getUMMSpecUrls()
+getCountUMMSpecUrls()

CompDataServer

UsedBy

Uses

Starts

StartedBy

Uses

UsedBy

Hosts HostedBy

 172

Headhunter

+performComponentSearch()
+performSearch()
+InititalizeLifetimeService()

-QIDList
-resultTable

HeadhunterRemoteClass

+Main()
+InitializeComponent()

-MulticastGroupIP
-MulticastGroupChannel
-MulticastTimer
-RegListener
-QMListenerPort
-QMListnerPort
-Metarepository
-DSMCommunicationThread
-regListenerThread

Headhunter

-DSMAddress
-UserName
-Password

DSMSettings

+ContactDSM()
+Start()

DSMCommThread

+Start()

RegistryListenerThread
+Start()

MultiCastThread+createMetarepository()
+populate()

MetaRepository

+EncryptTripleDES()
+DecryptTripleDES()

CryptoTool

UsesToCrypt_Decrypt

UsedBy

HostedBy Hosts TakesInputFrom

SendsInputTo

Starts

StartedBy

Starts

StartedBy

End13

End14

Starts

StartedBy

+build()
+createMetarepository()
+createTables()
+dropTables()
+getFromMetarepository()
+persist()
+putToMetarepository()

-DBLocation
-resultTable

MetaRepositoryHandler

Utilizes

UsedBy

Query Manager

+queryUMMSpecificationURLs()
+propagateQuery()
+processQuery()
+InitializeLifetimeService()

Class1

QueryManager Hosts
HostedBy

 173

Domain Security Manager

+InitializeLifetimeService()
+authenticateUser()
+generateSecretKeys()
+getDomainList()
+getHHList()
+requestAccess()

DSMRemoteInterface

+getKey()
+getMulticastAddress()

URDSPassport

DomainSecurityManager

Hosts

HostedBy

returnsreturnedBy

 174

